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INTROD UCTION'

I consider it a great honour to have been elccted as sessional

presrdentof the Indian Society of Agricultural Statatics. -1 had the -

previlege of being in the first batch of students trained by the
Institute of Agrlcultural Research Statistics {then Statistical Wing of
the ‘ICAR) about thirty-eight years ago. I also recall-may close

“association- with the Indian Society of Agrlcultural Statitics i in its

first ten years.

Though I have continued my interest in the teaching of
statistics throughout the last four decades, both -by-direct teachning
and through my book which has been -used by over 200,000

. studeats i Indla and abroad my research interests have undergone a
- full cycle. [ started with Statistics and then worked successively in
-Ballisiics, Fluid Dynamics, Operatioa Research Biomathematics,

Pattern Recognition and Information Theory.

My current mterests are’ mainly statrstlcal in nature, Tam
interested i in stochastic brrth-death-lmmlgratron-emlgratlon processes,
stochastic models in compartment analysis, statistical measures “of
entropy and divergence ‘and applications of maxrmum-entropy
principle to’ pattern recogmtlon, time-series analysrs, non-linear
spectral estrmatron, estimation of mlssmg values and non-parametrrc
density estimation.

I would like to use the present occasion to make a strong plea
for a greater role for principles of maximum entropy, minimum
discrimination information, ‘minimum inter dependence, minimax
entropy etc. in the development of statistical theory.

*Techmcal Address at 3Sth Annual Conference of ISAS, 1984. '
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Statistics is concerned with inductive inference and in particular
- with drawmg of inferences about populations from knowledge about
samples.. The principle 6f maximum entropy is also concerned with
drawing of most unbiased inferences when only partial mformatxon
- is available about a probabrhsnc system :

In the present address, I shall discuss some of the applications
of the principles of maximum entropy and mrmmum dlscrlmmatron.
mformatlon in Statlstlcs

TuE MAXIMUM-ENTROPY 'PRINCIPLE

~ Suppose .we know that a random variable can take only. values
X1, X255 Xy, but ‘'we do mot know the probability with which the
“.variate values are taken. The only information we have about the
probability dlstrlbunon is that the sum of the probabrhtles must be
‘unity, i.e., ) :

Zpt—p1+pa+ +p~==1 N 0))

) 1-=1

"We have an mﬁmty of probability distribution satisfying (1)
and ‘'we have to have a principle to be able to choose in some sense,
the ‘best’ out of these.

Lap]ace very carly, gave his prmcrple of msufﬁcrent reason,
that since we have no reason to give a greater chance to one value
than to another, let us choose

N 1
p1=p2=---==p~=ﬁ . - @

L This drstrrbutron _may also be regarded as the ‘most uniform’ or
~‘rhost smooth’ or ‘mast unbiased’. or ‘least committed’ distribution
we can assign. Any other dlstrrbutron will be less uniform, will be
‘more: biased and. will imply conscious and unconscious use of
information which we do not possess and have no mght to use. This
distribution also maxumzes Shannons measure of uncertdinty or
,entropy =

s=—2 Dilapitr 3

1—_1 ' L.
sub)ect to ( I) bemg satisfied. Thus we may reEard (2) as the dlStI‘lbl.l'_
tion whlch maxrmlzes the uncertamty subject to use being made of
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the given information (1”). " Now suppose some divine power also.
gives us the information that :

N ’ o :
3 pi g (xid)=ar, pe=i, 2,0om - -(4)
i=1 , - o

i.e., it gives us the value of m papulation moments where m<(n—1).
We still have an infinity of choices of probability distributions and
we have to make a choice. Again we would like to be .as objective
and as unbiased as Possible. We should like to make use of-all the
information we have and scrupulously avoid making use of any
information that we domot have. We should like to use the whole
truth and use nothing else but the truth. According the principle of*
maximum-entropy, we choose the probability distribution which
maximizes (3) subject to (1) and (4). Using Lagrange’s method, this
gives : : . y

- pi=exp [—A—M g (x8)= ... = 2m gm (x9)], ' (%)
were uéing (1) and (4)

. N
exp A=, exp [— M g1 (X))~ &2 (%)=

i=1 -

—hm gm (x‘i) 1 6

N .
a eXp 7‘o=2 gr(x)exp [~ &1 (_xi)—7\2 g2 (xi)— ...
i=1 : .

g (3] 1=1, 2peeey M N©)

From (6) we can determine X, as a function of Az, Ag,.- Am and from
(7) we can determine ?;, Ag,..., Am as functions of a1, ag;..., dm.
Instead of (7) we can use

N .
3 g (x0) exp [— 2y g1 (3) = -~ gm (x4)] _
=1 : 8)

N
Y. exp [ g1 (%)= - —2m &m (x9) ]

i=1

ar=—=

r-ﬁl, 2,..».', m:
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Thus the maximum-entropy probability distribution is known if the
functionss g, (x) and the expected values a; are known for '

r=12

3 £yt

m

2. MAXIMUM'LIKELIHOOD' ESTIMATORS FOR a’s

Suppose the divine power gives us- only the function g’s, and
not the values of a's, so that we get a probability density -
function with unknown parameters ay, az,-.., @,

We draw a random sample of size n in which X, may occur

.k times, x, may occur kg times, ... and x, may ‘occur kx times so

katkat . tky=n . 0]

Here, of course', some of the k’s can be zero. To obtain estimates
for a’s, we use Fisher’s method of maximum likelihood. The
likelihood function is

L= oxp [—mho.—n )y gy—nihs ga— . —nAygal  (10)

where

1=z

-k] gr (x,)4 Z kj 8- (xj)
& = ' 1. =]=1

=

n

,r=]_,é,...,m (lI)

> k)
j=1

are the sample means of the given functions g1 (%), g2 (X), «eey m (%).
Differentiating (1) logarithmically, we get

m m - . :
1 2 3, Ay Y
L) = Ry 3P (12)
) 0N g, 2 0a &

From (6) and (7)

a, M-
exp A, 2= 2 —g& (%)
0ry - =1

m . ) ) )
‘exp.[ =2 Mgr(x) |= —a exph,. (13)
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From (12) and (13)

m ' .
1 a _ Yy X g—ay, r=12.,m (4
T n j= 17\

Differentiating agdin, we get

;1 92 | o 0 (g a)) — (25 (15)
. n Ba,aas (I”L) :‘: 6a Ba &~ ag,.

If the determinant | 8As/dar | is not zero, all the first order
partial derivatives of /aL will vanish if ‘

M=g1, d2=ga, -+, A= gm T (16)

and when this condition is éatisﬁed, the Hessian matrix of the
second order partial derivatives of /nL is given by the matrix

nloriloa,).

Now,

[ak’] 3“' l=m amn
oA;

where n is the unit mxm matrix. Also, from (13)

dar - 82}\0 ) _ .
N OAAN (18)
. and
LN N, O, N
CXP N0 + exp A, e Thy i§1 &i (x,)‘ gr(x)
m
X ¢Xp [_ Z )\b gk(x‘) ) ) (19)
k=1 .
so that
3%, |, 9r 8%
anan T an, o oy =E [g:(x) £:(x) ] _ (20)
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or

87\ ax; [g’(x) g,(x)] [g;(x) ] E [gr(x) ]

=c,ov[gj(x> &) | T an
From (18) and (2I) |
B =_'—cOV[g;(x) w0 ] 22)

S

so that the matrix ag,/87\4] is the negatwe of the variance-covariance
matr1x7 given by

var(g,) cov(gL,ga) :-... covlgy, gm)
cov(gs, g1) var(g2) ... cov(gz, gm)
zZ =] : . : (23)
. cov(gm,‘gﬂ cov(gm, g2) - var(gn'»)

- This matrix is positive - definite unless the constrams are lmearly
dependent ie., unless the set of functions '

1, 81 G5, o), -y @] B e

is a linearly dependent set. We assume that this is not the case, i.e., ‘
we deal with only linearly independent constraints. In this case the
matrix Z is positive definite so that Z~1is also positive definite and
—Z-1 is negative definite. Thus from (17), the matrix [924/a,] is also
negative definite, but this is the Hessian matrix of second order
partial derivatives of InL at the points where the first order partial
derivatvies all vanish. Thus we_establish that /uL is maximum when
ai, a2, ..., am are given by g1, go, ..., gm.

Thus the problem of estimation of probability distribution is
reduced to the following steps :

(?) Specify functions gi(x), ga(x), -.., gu(x); |

(#) Based on a random sample of size n, find g1, 82, orns Zo
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(#) Find the probabilitics by using

- 7\1g1(x;)*7\zg2 (x,)—— ee — 7\mgm(x{)
—_— € -
P N —7‘1g1(xi) —Aagz(xi) — .. —ngm(x;) (25)
e '
i=1

(v) Find A1, A2, -+, Am in terms of ay, 4, ---, am from (8).

(v) Replace ay, az, .-+, Gm bY 81, 825 -+ gm-

{I. MINIMUM CROSS ENYROPY (INACCURACY)
AND MAXIMUM LIKELIHOOD

If we have reasons to believe, on the basis of ins’titutionA and.
experience, that the probability distribution before the moments are
prescribed, is given by g1,z --dn rather than by the uniform dis-

tribution, then we choose p1,p2,--:Pn in such a way that this distribu-

tion is as ‘close’ to g1, ga,--+» dy at possible and at the same time satis-
fies the given constraints. For this purpose, we minimize: Kullback’s

information discrimination function

N
izlp, In —5:— ' : (26) .

subject to the given constraints. Tlhe equations (5), (6), (7) and (10)
are modified to .

pr=a; exp [—2o—M g1 (x)—22 82 (o)) = o = g )l @D
_ . _ _
exp A= X &1 €Xp [—hig1 ()= =N & (%1)] (28)

’ i=1 :
exp Mo ar= Y 4 &r (x)exp [ &1 (x)— =2 g () 17 (29)
L=(qu, g2,--,dn) €xp (—N o—N gy —...—Ndy, gnl  (30)

* The values-(16) still give the maximum ;likelihood estimates for the

parameters.
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4. COMPARISON WITH FISHER'S THEORY OF } STIMATION

-Given a set of observations Xj, Xs..xn; Fisher regards these
as a random sample from a population and the aim of his theory is
fo get, from the sample, as much information about the population
as possible. His three steps are :

()] Spedﬁcaﬁon ie., specify the density function of " ‘the
population, say f(x, a, @, --am). This can be done on
the basis of intuition and experience.

(ii) Estimation: Here the parameters di, d,...am have to be
estimated as functions of the observed value xp,Xs...,xA.
Fisher laid down the criteria of consistency, efficiency and
sufficiency and gave the, method of maximum likelihood
‘which gives estimates that, in general, satisfy these criteria.

(m) Distribution : Here thé distributions of the estimates in
random samples as -obtained in order to determine how
good the estimators are @

The critical difference between Fishher’s Method of Estimation
(FM) and the Maximum-Entropy Method (MEM) of estimation is in
first step. Whereas Fisher’s method proceeds by specifying the density
function, MEM starts by specify certain moments correspondlng to
the functions g1, g2, .. <1 Gme

s

Since we can have a large number of density functions with the
same moments, we use the MEP or MIP to get a unique most unbia-
sed distribution with these moments.” Thus, while FM specifies f
directly, MEM spemﬁes 81, 8'---&m and then uses MEP to deter-
mine f. -

In both methods, the population values of the parameters need
not be given, but can be estimated in terms of sample values by using
the method of maximum likelihood. The estimation is easier in the
MEM since here the maximum likelihood estimators for a;, a2...am -
. are g, g2,---gm and can be obtained at once. In FM, for every

depsity function, we shall have to obtain estimates for @, ds,.:am
by solving equation 9/dar (lnL) =0, r=1, 2,...,m dec novo in every
case. C
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) There is no objective method for specifying either f or g1,82,...,
‘g It may even be argued in favour of FM that specifying the func-
tion f may be easier than specifying m functions gy, gs,...gm. That
this is not so is-seen by considering that f determines g1, 82,-+-, gm.
uniquely, butgi, gz-.., gm do not determine f uniquely without the
tise of the maximum entropy principle Thus, insomesense fcontains
more information than g’s and its specification should requlre greater
divine assistance than specifications of g’s.

Actually speciﬁéation of f implies the specification of all infinity

of moments while specification of g’s requires the knowledge -of only

a finite number of moments. In most cases m==1 or 2.

In many practical problems knowledge of f implies the know-
ledge of microscopic structure of a populat.on, while knowledge of
g’s implies only a knowledge of some macroscopic observable qunti-
ties. The moments can be mterpreted in terms of some measurable
entities. Thus, in thermodynamics, these may stand for average
energy or temperature or pressure; im social sciences these may
stand for budget or number of jobs, or number of hours, etc. In
- fact, in these cases specifying moments is realistic while specifying f is
much more difficult to interpret.

distribution

‘-MEM 3

moments —> maximum
- MEM likelihood .
estimators

‘The above figure illustrates the relation between the two methods.
In FM we go from the distribution to the moments and the maximum
likelihood estimators. In MEM we go from the moments to distribu-
tion and to maximum likelihood estimators. :

In almost all cases, the choxce of g’s is confined to the functions
Cx, x2, x%, Inx, (Inx)%, In(1+x), In (1+x%), | x—m | (31)

g
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For specifying f; the choice is much larger. Eventhe catalogue of
standard distributions is large and one has to be sufficiently familiar
with all these distributions in order to be able to make an mtelhgent
spemﬁcatlon in FM. .

5. .DI.ERIVATION OF STANDARD DISTRIBUTIONS BY USING
MAXIMUM-ENTROPY PRINCIPLE

One way of preparing a catalogue of standard distributions is
to find all the maximum-entropy distributions which can be obtained
when expected values of one or two of the function given in (31) are
prescribed. The ME distribution will also depend on the range of
* values permitted for x, e.g., on whether x takes on a finite and discrete
set of values or x can take all values in a finite interval (a,b) or in a
semi-infinite interval (0, ) in the infinite interval (— o0, o0).

The distribution will also ‘depend on the a priori probability
density funcfion that may be specified.
" Multi-variate distributions may be obtained either by :
(i) specifying covariances between pairs of variates, or by

(i) specifying expected values like E (%,4Xa+...4-x,), or by

(iif) specifying a relation among the variates, e.g., by specify-
ing xl-l-x'2+---+xk‘~——'I or by :

(zv) specxfymg an order relatlon among the varlates, .8, by

spemfymg X1SXa € X< KX
and then by applying the MEP or MIP.

For the discrete case if the a priori probability distribution is
given by g1, ¢a,--,qm and the constraints are given by

N N , .
. Z] pi=ls 'Zl Di grA(xi)=an r=172,"'3m (32)
== i= _ . : ‘

then the ME or MI distribution is given by

PDi=q; exp [_)\0_,- A &r (x)— .. ~ X Em (xi)] ‘ (33) -
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where N
. explo= Y exD [—A1 gy (x)—...—Ay g (x1)] (34) .
. i=1 _
a, exp M—Z‘,gr (x,) exp [— 1 g1 (%)~ oo = Ay G ()] (35
i=1 .
S r=1,2,.

For the continuous case, if the a priori probablhty density
function is fo(x), then :

()=, (Dexp [—he—hs g1 (6) = oo g ()] (36)
exp ho= j fox) exp[—2 @ ()= ...— Amgm (x)] dx 37 -
a : )
a, exp A= j fo(x) g.(x) exp[ —A; g1(x)— ... —Mn gm(x)] dx (38)
a

We now give some distributiong obtained-by using these results.

6. MAXIMUM-ENTROPY DISCRETE-VARIATE PROBABILITY

DISTRIBUTIONS
Range of Sepecified Prior . ME/MI Name
Variate . Moments Distribution Distribution
. : . di Di
g : I uniform
1,2,3,. — — "l '
1,2, 3,8 mean m uniform abt geametric
0,1, 2,3, mean - ( :') . [ ?]p" g""* binomial
1,2, 3,0 0n mean m improper ab® ~ geometric
T " uniform
e~ ™ mt .
0,1,2,3,... meanm @nt 7 - P01sson
' ) 1
I_l —_ L
1,2, 3,... mean m i Ini— q) ;~ Log Series
P
3 g
—q T generalized
1,2,3,... mean m b T - geometric

(-]
)3
i=1




ROLES OF MAXIMUM-ENTROPY AND MINIMUM-DISCRIMINATION 23

7. MAXIMUM-ENTROPY CONTINUOUS-VARIATE
PROBABILITY DISTRIBUTIONS .

(a) Range (—oo, ©)

E(x)=m, E(x*)=dj

(b) Range [0,0]

Specified Moments Distribution
E (x) ' Does not exist
E (x?)=0? N(O, 0?)
E(x—m)?=a® N (m, 0%
. E(x)=m, E(x—m)*=0* Nm, o)

N (m, aﬁ—mz)

E(x— X)2=¢" N(m, c*) (m arbitrary)
E(x")=a; Does nbt"exist if k is odd
r=1,2,...,k FX)=6xpl= Ag—hx— .. — N,
- if & iseven

E(|x|)=o Laplace

E(| x-m|)=6 Laplace with mean m

E (x)=m } SR A
E|x—m| =0c Laplace with mean m

E&n (1+x3) Generalized Céuchy

E(x) exponential

E(x), E(Inx) gamma

E(x), E[In(1+x)] . beta

E(Inx), E(Inx)? - log horxnal. \
Eln(1+x?) - . utilateral generalized Cauchy
E(x), E(x?) truncated n;)rmal if o2<m?

exponential if o?=m?
does not exist if 62>m?
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{c) Range (0, 1)

Specified Moments , ' Distribution ‘
nil _ » uniform
mean ‘truncated exponential
E (x), E(x®) ” truncated normal or

truncafted u or uniform
depending on prescribed
- values ’

E(lnx), Elln(1-x)] - beta

8. MAXIMUM-ENTROPY MULTIVARIATE DISTRIBUTIONS

8.1 Discrete Variate Distributions

. If the variates take integral values 0, 1, 2, 3,..., if the mean of
each variate is prescribed; and the prlor probabxllty distribution is
given by :

(rn+ret...r) !
rnlrelor!

then-the maximum-entropy 'probability density function is given by :

Gebraboatn) e g g @

o Y — 1
Pr1,r2,eens1n) PRI R I L e

where
"Aisa normallzmo constant and

q’s are to be determined in terms of the prescribed means. We
get the following special cases :

@ 1If r1+r2+ +m=N, we get the multmomtal dlstnbutlon ;
@i5) If re, ro,. » In -take all non-negative integral values, we
get ¢

_ ' ritFret. ) !
P(rl,l‘Z,---,r,,)——.(I_ql_'qg‘—‘---_‘ q") "1 ! rz!..-rn !

X g1 g2 ... g’
r>0; i=1,..m q<l; qt+get.i.+qg,<l (40)
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This gives the multivariate geometric diétribution‘

(iti) If ry, ra,...,rs takes all non-negative integral values except
that ri=rs=...=r,=1 is not allowed, we get :

r) = qn (l‘1+r2+‘...+l‘,,)!
! q1+qa+ -+ gn rilraliorn!

plres 12,..

Xq:1 qu q:’n.. (41)

n
(iv) Ifry, rg;..-r,; takes all positive integral -tvalues, we get

I—gi—e—qn  (rFro..4r,)1
Gitgattgn el

p(rlsr25"'sfll) =

Xq1 g2 .., -gn - (42)
& 1 2 m
1f in addition to prescribing the arithmetic mean of each
variate, we also prescribe E Un(ri+rat...+r0)], then the maximum-
~ entropy density function is:

e 1 ekt
P\F1, Ira,-.,Fy (P(q,d) r].! r2!... rn!

.x,qu q:? q;n (f1+r%+...+rn)d (43)
where
9=q1*F @2+ ...qn, and
#lg.d)=3, ¢* k?; o r;20; all r's not zero
i=1 .

‘

Ifd =0, this gives the multivariate geometric distribution.

If d=—1, this gives the multivariate log series distribution :

1
iy Fayeeey Pp)=
p(l 2 M) gn(l_ql___qz_.“_qn)

(r1+f'2+ +r"’)

T ! rz‘ s

g q ... q;n (441)

If we take other values of d, we get the family of multivariate gene-
ralized gemoetric distributions.



26 JONRNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

If we take the prioras: - \

(ritra-+rmtM—1)!
ri! ral .oy

and prescribe the means only, then we get the multxvanate negatlve
binomial distribution :

o QoM C(M+ritat...dra)
P(rl, rﬁ)"'!r")— T(A) rl!:a! e rn!

x[%]’l [%]’ (45)

Similarly, we can obtain the multivariate generalized negative bino-
mial distribution :

- CIM+B(ritrat o tr)l
P(’l”_z""i"')‘-c CIMF@—D(ritrat .+

q:1 q:2 q;,,
ril rel..r,! (46)
where
C=(1+z)™M
where
(1+z)!3 N

If we take the prior as:

r1+r2+---+rn
rilreloor!

and the means are prescnbed we get the multivariate Poisson

distribution :

' — e_(q1+qz+---+q,,) ritret...tr,
P(r1,rz,...,rn) g1+qat...Fn r! rz!---r,,!h

xq" q:2 g (43)

n
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8 2 C.mtmuous-Varlate ’\'Iultlvanate Dlstnbuuons

() If the range. of each vanate is'(— o0, o), and 1f the means,
" - variances and covariances are all prescrlbed themaximum- .
entropy dlstnbutlon is the' multlvarlate ‘mormal dlstnbu-
tion. : :

“(2). If the range of each variate is (0, 00), and if E(lnx,)'
- E(Inx)?, and cov -(Inxs; Inx;) are all prescribed, the
'_maxxmum—entropy dxstrlbutlon is. the multxvarlate log
normal dxstrlbutlon ‘ : -

- (3) If E(lnx1), E(Inxz), E(Inxn—1), E(ln(l X—xe—...
—Xn_1)) are prescribed, and each x;,220, and xj+xa+.. + ;
xn-1$l the maxlmum-entropy d1str1but10n is .the sttrl-

~ chlet dlstmbutxon .

(@) 1f E(inxy), E(lnx,) , (Blnxa), E(Iﬁ(}1+x1+,.}.~+x,,.'_1))

are prescribed and all %30, -the maximum entropy =

dlStl‘lbUthD is the multxvanate beta dlstrlbutxon of the
) second klnd . :

(5). If in (4) xX= , WE get a generallzed multlvarlale log1st1c i
- distribution of whlch the ordmary lOngth dlsmbutlon is -
‘obtained as.a partlcular case.. -

() If K ln(1+x§+x§+'---x,2,)) is ’p_re'sci;ibed,ﬁ we get a genera- .
~ " lized multivariate Cauchy distribution of which the ordinary
".. “multivariate Cauchy distribution isa Spe'cial case. |

T If the only 1nformat10n about the varlates is that x.>0 and -
" xy+xaf...+x,=1, then the maxifoum entropy density
for the ith variate is (n— D (1—x)=2 and the joint density
'for two vanates is (n— 1) (n 2) (1— xi-—xj)" —8

(8) If, in addltlon, the means of the v’ariates are also prescrib--
. “ed, the maximum entropy den81ty for each variate is the ..
- sum of exponentlal functlons

' ‘('9') If E[ f(x)] is prescrlbed for each variate and in addition,

‘we are given- that x1<x2<xs< .<x,, we can find the

distribution of order__ed statistics. In the {usual” dxscussmn
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all the unordered variates are supposed to be independently

and identically distributed. In our case, they need not be

identically distributed.

(10) In general, to get a multivariate distribution using the
maximum entropy principle, we have to prescribe

E(x1+)§2+---+xn)' or prescribe some expected values of

some functions of X, X2,-.-,Xs. In addition, we ‘have to
prescribe the expected values of functions of x; separately. -

The properties of most of the univariate and multivariate
distributipns obtained here are available' in Johnson and
Kotz [19—21], Consul and Jain [5], Consul-and Shenton

[6] Jain and Consul [16], Patil and Joshi [43]. and Patil, ~

Kapadia and Bowen [44]. } _

9. ENTROPY-CONCENTRATION THEOREM

'Let Po=(p10> Dao, +-+» Pno) be the maximum-entropy probability

distribution and let P=(py, p2, -5 p,.)_ be any other probability distei -

bution consistent with the given constraints. Lét Smaz and S be their
respective entropies and let :

AS=Spsx—S o (49)

Let C be theclass of all probability distributions consistent with
the constraints, then in this class, P, has a favoured status. It is most
unbiased since it does not make use of any other information than
what is given by the constraints. “The distribution P.can be obtained
only by using some additional information, consciously or unconscio-
usly. Pqis also as near to the uniform distribution as possible since
it minimizes the directed divergence between P and the uniform

distribution (1/n, 1/n, ..., 1/n).

The following questions naturally arise :

(1) Can we measure the degree of bias of P? " Can we use AS
as a measure of bias ? Which will be best; AS,
AS/Smaxs AS/In n, and why ? -
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(2) What proportion of probability distributions in Chave their .

: entropies greater than .93 S,,,. or >.9 Smax  OF>.5 Spar ?
Will this proportion depend on the nature of the cons-
traints or on their.numbers only ? '

(3) If we consider n-dimensional space with coordinates
(p1, 2. ..., p), then the set of points corresponding to the
class C from a closed convex set (why?). Can we consider
AS or

" . B
Z p In L : ‘ ...(50)

as the distance of any point in it from the point correspon- .
ding to the maximum-entropy distribution Pq? Can we
say that Py is more biased than P, if AS1>AS,?

(4) Can we find the additional constraint or additional infor-

* mation presumed which can make P a maximum-entropy

distribution ? - Can we at least find the measure of infor-
mation contained in this constraint 9

Recently Jaynes [18] gave the following entropy-concentration
theorem as a step towards answering-these questions:

“In N random trials, 2NAS is asymptotically distributed
as chi-square with k=n-—m\-l degrees of freedom.”
Thus, we get :

x2(0.5)

P [ Smltz"“ N < S QSma:c'] = 95 (51)

X2 (.01 |
P [‘5’”“_% < S < Smax] = .99 (52) .

so that there is an ‘entropy fiducial interval’ of thength X% (P)/2N

~ with ‘confidence coefficient’ 1—P. - The length of this entropy

interval :

(1) decreases fast with W, in fact, it decreases. inversely as N;
(2) increases with confidence level;
-(3) increases with n;

" (4) decreases wih 'm.

-
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The probability distribution Pin C for which the entropy S lies
outside the 99% entropy interval is not likely to arise. In fact, a
more correct statement would be that value of P strongly suggests
the existence of an additional constraint on the system and urges us
to search for it. :

_ Thus, for an unbiased die, Smar=In6=1.792, k=5, M=1000,
x2 (.05)=11.07, %2 (.005)=16.75.so that 95% entropy interval is
(1.786, 1.792) and 99.% eutropy interval is.(1.783, 1.792) so that if
the entropy of the observed distribution is less than 1.783, we can
rule out the possibility of the die being unbiased. .

We can now introduce another constraint that the mean.is pres-
cribed. We throw the die a large number of times and observe the’
mean number of points. Suppose it is 4.5, It can be shown that in
this case, Smay is 1.614, k=4, x2 (0.05)=9.49 and the 95% confidence
entropy interval is (1.609, 1.614). If the entropy of the observed
distribution is less than 1.609, it- indicates the existence of another
constraint or it may suggest that a constraint prescribing 'a moment
other than the mean may be operative and we may look for it.

We may note that Jaynes’ theorem is asymptotically valid, i.e.
valid for large values of N only. :

For smaller values of N, it may sometimes be possible to do_.
complete enumeration. Thus for 20 throws of a coin, the 2%=10°
possibilities are distributed as follows: '

4 ofheads 020119 218 317 416 SIS 6l4 T3
4 ofstates: 1 20 190 1140 4845 ° 15504 38760 77520
4 of heads: 8/12  9/11 - 10/10

4 of states: 125970 167960 184756

Thus, the number of ways is maximum for 10 heads and 10 states,
and this the most likely state to occur. - In fact 9 and 11 heads have
also a large number of ways associated with them and these states
together account for more than 50% of the total number of ways.
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jaynes’.proof is based on the concepts of #-dimensional space
and is an adaptation of Pearson’s proof of the chi-square distribution,
An anatytical proof is given in the next section which shows that if
Al=I—1Imy, then 2N Al is also distributed as chi-square with & d.f.
The proof can be easily adapted to measures of entropy other than
Shannon’s, provided these are concave functions.

10. MaxmmMum ENTROPY, MINIMUM INFORMATION, MAXIMUM
LIKELIHOOD AND MINIMUM CHI-SQUARR

) n n - )
AS=8Snyp—S=— Z Dio lﬂpioz P in p;
: i=1 i=1

i

- R . R
=Y mEy 2 (Pi—pio)in pyy
i=1 P 5

n n
=YX pinZi4 ¥ (p=po)

i=1 0=l :

[—2—A1 gy ,(xt)—-.--—-'lm 8m (xd)]

n n
=Y ninlic— v 5 P
i=1 Dia i=1 Di

n ’ .
— Z D ln;;[ I+ Dig P-J
i=1 Pi’ ]

4 p[ Pio—p; _ (pip+p;)? + (Pio_P1)3_m
f bi . 2p} 3p}

i=1

=71 Zn (Pia —p))* _i Zn: (Pio_?Pi)s .

i=1 Di 3'i=l b
=L "'(Plo y2)) 1+ Dio—p; ]
2i=1 P D
1§ (o P)a[ Pie—Di ]
_— ) l ]
i 3 =21 Dio . + bi +

I (Dio— py)* L 5 (pig—py)3
—_— + =y e fv (53)
2:151 pio 6 i=21 - P
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Similarly,

’ n o i n Dio
A1=I—‘]min= Z Di In _éi_ Zp,-o ln»—q’—

i=1 i i=l1

g n Bk f g
= i In =+ ( i—Di ) In 20
i=1p Pio ,-Z'Ll pi— P qi

_ o i n .
=¥p In T+ Lpi—pid

i=1 Do =1
X [—=Do—R1 ga(i)— - — X gm (x0)]
n .
— pi
= i In —
IEP " Dip

-1 $ (po=pd® | L G Giom P (s4)

i=1 P =)
As such up to a first approximation :

r P 2
2N AS=2NA1=_%M—W$L; x3, (55)
i= . .

since Np; are the observed frequencies and Npio are the expected
frequericies. Again, since there are m-+1 constraints, the number of
degrees of freedom is n— m—1=Fk.. This gives the proof of Jayne’s
entropy concentration theorem that 2N AS (or 2N AT is distributed
asymptotically as chi-square with k d.f.

The proof also gives an interesting interpretation for the chi-
square which is now seen to represent twice the difference between
the observed entropy and the maximum entropy. Many statisticians
have lamented that in spite of its useful;iess, chi-square does not
represent anything meaningful. In fact, chi-square is intimately
connected with entropy maximization. Akaike [1] considered this as
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a confirmation of his thesis that “some of the most sigunificant
successes. in the history of statistics were obtained when the statisti-
cian was directly dealing with the entropy and its maximization.”.

Now, let there be N independent trials and at .each trial -let
there be 7 possible results with probabilities py, p2,...,Pu depending
on the parameter . If xy, x3,..., X, are the observed frequencies,

_the likelihood function is given by :

: N! ; e
L(3x1, X2, Xn,2)= ml’flpjz e Pin (56)

o N!
InL= In YIS +Z xi In N+:—Zix‘ ln\
n xi ) ' :
= In C_,-i‘?f xi In 7 | (57) :

where Cis independ_ent of pi’s and therefore of .  Since :

n n ' .
1—21 i—z'.;‘ Nt =N, (58) |

by Shannon s inequality, the second term on-the right20, and it will
vanish iff p;=x;/N so that ImC2>InL so that C is the maximum
value of L for variations in p;’s. Thus,

InL = In L.+ Zx, ln[ 1+ Np;c—xi]
i

i=1

n _ n .
ln Lyax+ E xi Lﬂ~_ _;_Z [NP‘ xi] +..

l—l ,=1
(59)
or
n (Npi— x;)? .n Y
I L=t Ly = St 4 Wi’
2 =1 ! 3 i=1 x.'.

=In Lyoy— = i+ :  (60)
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where
nogx _
X% =Z (Nps—xi)? » (61)
1=l Xi -

which differs only slightly from :

- (Npi— xi)* |
- Yy 62
x?“ i_;_zl Np; : )
and '
n_ (Npi—xi)® :

where p,,is an estimate for p;. By minimizing X} or X§ or X3 with
respect to [, we can get minimum chi-square estimator for it.

. This discussion connects chi-square with log likelihood function.
Earher we had related it with change in entropy so that'we get :

AN AS=2N AI=2AIL =X& | (64
or
ZN(Smax_S)=2N(I'Imin) =2(&anax—lnL) =X421 (65)

This relation is true only asymptotically for large values .of N.
However, it gives a basic relationship between methods of maximum
entropy, minimum entropy, maximum likelihood and minimum

* chi-square.

This gives an alternative method of defining entropy. Devia-
tion from Maximum Entropy is the deviation from log maximum
likelihood per trial. When observed frequencies are equalto expected
frequencies, L=Liax, S=Smax, [=Injn. :

Another important link between maximum-likehood, chi-square
and Kullback’s directed divergence is provided by. the following
-result of Kuppermann [39]. .

Let X1, X2, -y XN be a random sample from an exponential
population with density function:

.P(J_C, 9)=’q(3c)v r(6) exp[._jz‘_‘l A; (6) gj(’f)] y ) 4
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where x is a k-dimeasional and 0 is an h-dimensional vector. Let

B be the maximum-likelihood estimator for 9, then:

N R (x1, ) - ‘
2 33 20, 0) ﬁT;'T) (67)

I
is distributed asymptotically as chi-square with k d,f.

According to the minimum - information divergence principle,
we usually are given g(x) and we seek to find S (%) minimizing :

I(f:g) = J.jm J(x) In i,%; dx =tw fGx) lnf(x)dx

-7 romw e (68)

and satisfying certain constrains. Alternatively, we may be given
f(x) and we may seek to find g(x) so.that we have to maximize:
— Lx Un g()] f(x) dx = = —J’_cc In g(x) dF(x)-  (69)

Now let x;, xz, '---, X» be a radom sample and let F(x), — 00 <x< oo
correspond to the sample distribution defined by: ’

F(x)=fraction of x;, X,, e X < X (70)
so that if ¥y, X3, «++, Xn are in increasing order, we have

F(x)=0 when X < x,, F(x) =;I—, X << x<xy, ...

H

" f(x)=1 when x=x, ' (7_1.)
and (69) becomes : -
_ o . .
T n X ing(x) ‘ (72)
L :

Now let the density function g(x) be indexed by a parameter 0
so- that g(x,6) is a known function with an unknown paraméter 8 so
that we-have to chaose 0 so as to minimize:

1 = ' ‘
- ;'Zl Ing(x;, 6)— 17 log L(x1, Xg, ..., Xy, 0) . (73)
. j= .
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where L is the likelihood function so that minimizing the divergence
information of g(x, 6) from f(x) (where f(x) cofresponds to the
sample distribution) is equivalent to maximizing the likelihood-
function. The function defined in (69), i.e.,

HEN==["_ g 0@ 04

is called the cross-entropy of g and fand we have minimized it to
choose 8. For the discrete case, we get the expression:

n .
— i§1 piln gi (75)

which is called the inaccuracy [41]. - In fact, we have

& i n - no ' 4
‘% piln == — Y.piln g —‘[—ZPG In pi ] (76)
i= . :

qi i=1 i=1

[, s L8 dem =] s ) o

g(x)
|7, s e ] )
so that
Kf:g) = Hgf) — HF) _ (78)
or ' '
'Informaﬁon Divergence = Cross—entropyrEntfopy 79)

This is an ideatity it f=g. If glx)=1, it shows that minimizing
informatjon divergence in this case would give same results as
maximizing enfropy.

Our discussion shows that maximum likelihood principle can be
regarded as a-special case of the minimum information principle,
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12.. COMPARISON WITH METHOD OF MOMENTS

The Maximum Entropy Principle Method of Estimation has
same similarities with the Method of Moments used by Karl Person;
but which was strongly criticized by Fisher. Fisher assumed that he
“had the correct model f(x, 0y, 04,...,0,) and his object was to estimate
the parameters 6y, 6,,..., 6,. He gave the method of maximum likeli-
hood and the criteria of consistency, eﬁicxency and suﬂiclency and
showed the superiority of his procedure over that of method of .
moments. This superiority was based on the assumptlon that the
correct f was known [8, 42]. )

Pearson did not have one model, but a family of models in -
. terms of his family of curves. He chose a member with four para-
meters and compared the first four moments of the observations
with four moments of the distribution to get the estimates for the
four pirameters, Later he carried out a goodness of fit. If the fit was'
not good, he pracezded with another family of his family.

Pearson used E(x!), E(x*), E(x%®), E(x%). In MEM. we also
- consider moments, but'we also consider E(Inx)?, E(Inx)?, Eln(1-x),
etc.,. Pearson’s method could lead to the famlly of maximal-
entropy dlStI‘lbuthHS :

J(x)=expl—rg—Ax—Aex®—Agx®—Ax%] ' ' (80)

This leaves out alarge ‘numbsr of othet dlstmbutlons occuring in
practice.

The main differeace between the MEM and the MM is that the
former has a sound theoretical principle to back it.

The MEP givés us which moments we should calculate from the
data in order to estimate the parameters, Thus, for the beta distri-
bution, we should calculate geometrical means of x and 1-x. For the
gamma distribution, the moments to be calculated are the arithmetic
and geometric means of the observations.

"13.  GAUSS’ PRINCIPLE OF ESTIMATION -

Let f(x,a1, as,---,am) be the density functién and let
Elg.®)]=a, r=1,2,...m (81)
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then Gauss’ principle considers those density functions for which the
“maximum likelihood estimators for a, are :

o= lg () + g ()t g (3] ®2)

Gauss considered the particular case of normal distribution only. It
is obvious that Gauss’ Principle of Estimation and Maximum
Entropy Principle are equivalent. It can be shown that.Gauss’ princi-
ple leads to the exponential family of distributions and vice versa
[3,35].

_ For exponential family members, the ‘calculations of maximum

likelihood estimates is relatively .easy. For others it is relatively
complicated. In fact, in the earlier stages the MM was sometimes pre-
ferred because it led to easier calculations. With the advent of
computers, -this advantage of the MM was lost. However, the
representation of distributions in Monte Carlo studies, when only
moments are known, borrows from the ideas of Karl Pearson and is
strengthened by the Maximum Entropy Principle.

14. CONTINGENCY TABLES

For an m X ncontingency table, in which all elements and totals
are divided by the grand total, let Sy, S2 and S13 denote the entropies
of the marginal totals distributions and of the complete table. Then
it is easily shown that : i

n : :
—S1atS1+Se= Y L pijln —’— (83)
j=1i=1 pi.opj i

which >>0 by Shahnon’s inequality, and vanishes only when pi;=p;.
p-j, i.e., when the two attributes are independent. Thus, S3-+S2—Se
is a measure of dependence in the table. Substituting in (33)

pij=pj p-jtei, ' : (84)
we get :
; _
Sﬁ—Sz—Slz——Z Z pi; In [ 1— e_‘f’_]

j=1i=1 Pij
1 & T pij';—pi. p.j P

== = (85)
2; 53 pi p.
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" ..so that up to a first apprdximation 2 (Sl+S2—S12) is distributed as
. chi-square with appropriate degrees of freedom, and chi-square test

appears as a test of ‘closeness’ of the entropy of the table to the

‘entropy calculated on the hypothesis of independence of attribuies.

For a diXdzX... Xd, con‘tingenéy table, we find similarly that
2(81+S8a+ .- +S,—81z..., 1) is distributed as chi-square. Here S;,S;,
-+, Sk are entropies of the marginal totals and Sy2..., » is the entropy
of the table as such.

We can similarly calculate entropies for other hypotheses of
independence, e.g., of nosecond order interactions, of no third order
interactions or of conditional independence of two attributes, know-
ing the third and then express the difference in entropies in terms of
chi-squares [10, 12].

For transportation problems [23, 53], let xi; denote the propor-
tion of persons going from i origin to the j** destination, then

‘'maximizing : _ : :

. n m
=X X xyinx
j=li=1
subject to i

n m .
3 Xii=xi=0s, Y. xy=x.;=Dj,

J i=1
co-n m - ) . R
‘21 zlxij ci;j=C : (86)
j=1i=
we get :
xij=A: Oi B; D; e C1 (87)

and the maximum entropy is given by :

.om m. -
Smax=_ Z X;. In A; ‘f‘Z.xi. In X;.

=1 i=]1

“n n .
—'Zf xjiln xj— zlx.j In B;-+vC (89)
J= = . .
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j=1i=1"
with (m—1) (n—1) — I degrees of freedom.

The qudntlty 2[ S,,,ax+z Z xi5 I xi; ]is distributed as chi‘-’s'quare ~

Deeper results are obtained if we do not regard xij’s as fixed
numbers, but rather as random variablés satisfying constraints (86).
We can then use the principle of Maximum Entropy to obtain the
maximum entropy distributions of x¢’s, both individually and
jointly [36] : o '

15. SoME HiSTORICAL PERSPECTIVES

When Shannon .[47] discover\,d in 1948 ‘his 'ineasure of -

‘ uncertdmty or information given by— Z Di Inp:, he first thought of

i=] -
calling it ‘information’, but he felt that this word was already over-
worked, so he consulted the great mathematician Von Neumann
about the nawme for this measure. His response was direct, “You
call it ‘entropy’, and for two reasons : (1) the function is already in

- uge in thermodynamics under that name; (2) and more importantly,

most people do not _know what entropy really is, and if you use the
word ‘entropy’ in an argument, you will win every time ! [SI].

In retrospect, the advice appears to have been unsound on both
couats. Shannon had discovered a measure for uncertainty associated
with a probability distribution and the only thing common’ between-
his measure and thermodynamicentropy was that they had a common
mathematical expression. Even in 1948, the expressions for entropy
for Bose-Einstein and Fermi-Disc distributions were different from

—Z pi Inp;. Later it was established that the thermodynamic entrop)

i=1]

could be obtained from information-theorstic’ entropy through the
principle of maximization of entropy.

However, the word entropy has been so well-entrenched in
thermodynamics that even after.twenty-five years, many persons
consider the maximum-entropy principle as a principle of thermody-
namics. The misunderstanding has been partly caused by the fact ,
that the maximum entropy principle was first stated in 1957 by E.T.

‘Jaynes [17] in the context of statistical mechanics. Also, in this
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 way the maximization - of entropy came to be associated with the

second law of thermodynamics which states that the entropy always
inceeases. :

The unfortunate nomenclature may have been partly responsible
for this principle not obtaining its rightful place in *statitsical theory
Jaynes [17] did say that he would consider enfropy as equivalent to
uncertainty. If he had gone a step further and had called his principle
The Principle of Maximum Uncertainty, statisticians might have

. looked af it more closely because uncertainty is certainly the subject

matter of statistics. Even if had called it The Principle of M, inimum
Bias, statisticians would have been interested because many statistical

investigations are motivated by the consideration of minimizing bias.

Kulkback and Leibler [38] in 1951 gave the measure I (I:2) for
discrimination between hypotheses H; and Ha: The MDI principle
was not stated here. It was not stated by Kullback even in his book
[37] published in 1959 where he stated : “Information theory is
relevant to statistical inference and should be of basic interest to
statisticians. Information theory provides a unification of known

~results, and leads to natural generalization of known results. The

subject of this book is the study of logarithmic measures of informa-
tion and their application to the testing of statistical hypotheses.’

Kullback concentrated exclusively on the testing of hypotheses .
and this became the main application of information theory in

. statistics. Kullback did not refer to Jaynes’ work. We have of

course, to make a distinction between application of information
theory and applications of the maximum entropy principle and the
MDI principle. The motivation for the MDI principle came much
later joiatly from Jaynes’ maximum entropy principle and the
Kullback-Leibler discrimination information number.

In statistics, Fisher [8] had defined information prior to

- Shannon. He considered the object of statistical inference to be to -

get as much information about the population as possible, ideally the
whole of the information contained in the sample, but then proceed-

- ed to give a technical definition of information. The main goal of

statistical inference was not worked out in detail in terms of this

~ definition of information, though in the theory of optimal designs,

the maximization of the determinant of the information matrix is
conside red. C
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If fix,8) and f(x,0+ AB) are two density functions, where 8 is
_a vector, then it is easy to show that: -

16, 0+ AD=2% Teup Au Aby - 0)

Where

DR GEE e

are the elements of Fisher’s information matrix.

For the case of a single parameter, this shows that the greater
the value of Fisher’s information, the greater is the information for
discriminating between f(x,8) and f(x,6+A0) and so the density
function f{x,d) can be clearly determined. :

Although Fisher’s and Shannon’s concepts of information are
related, the prior imtroduction of information by Fisher may have
inhibited statisticians from exploiting fully the powerful and general
concept given by Shannon, with the important exception of Kullback
who exploited it fully for generating known results about testing of

hyphotheses.

, Jaynes’ work showed that statistical mechanics was more of a
statistical theory than physical theory and this could have led to
statistical mechanics being considered as a branch of mathematical
statistics. Oa thée other hand, the use of the word ‘entropy’ almost
led to the feeling that the use of the entropy concept, on a large
scale in statistics, may make mathematical statistics a branch of

statistical mechanics !

Whenever the principle of maximum entropy is used in eco-
nomics, gesgraphy, urban structure studies, marketing, etc., a feeling
is unfortunately created that some arguments by analogy with
" physics or thermodynamics are being used, while essentially one is
using probabilistic or statistical arguments.

Earlier we said that both the arguments of Von Neumann for
recommending the use of the word ‘entropy’ were unfortunate. The
first argument created a lot of confusion and misunderstanding. The
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second agrument was right; the use of the word entropy created a ot
of mystery and awe and always enabled one to win an argument,.
However, ti delayed nhe penetration of statistics by this principle and
the power of this principle could not be exploited in statistics. By
using the word, cne may create the feeling that one is using the laws
of physics, while one may be using only the laws of uncertaintly and
of statistics.’ Winning an argument is not as important . as winning
scientific truths. : '

" 16. THE ROLE OF MAXIMUM ENTROPY PRINCIPLE IN STATISTICS

The Maximum Entropy Priﬁcipie has been used in the discus-
sion of the following problems in statistic:

(1) Characterisation of Probability Distributioﬁs; _
)] Esfimatio‘n of Probability Distributions;

(3) Analysis of Categorical Data;’

(4) Testing of Hypofheses; '

(5) Time Sefies Analysiy;

 We discuss these in turn below. In the present paper, we_have
discuss (1) and (2) in detail and (5) partially. In part 1T we shall
discuss (3), (4) and (6) morefully. ' ' ‘

16.1 Characterization of Probability Distributions

Reza |46] and Goldman [11] obtained ‘uniform, exponential,
gamme and normal distributions as maximum entropy distributions.
Tribus [49] derived these and also beta and truncated normal distri-
butions, but stated that Cauchy and Weibull distributions could not
be dedtbed from the maximum entropy principle. Kagan, Linnin
and Rao [22] characterized these as well as the Laplace distribution
as-maximum entropy distributions through the MEP. _Lisman and
Van Zuylen [40] gave maximum entropy characterization of geome-
tric, chi-square, Cauchy and Weibull distributions, as well. Gokhale
[11] also gave maximum entropy characterisation of some distribu-
tions. Dewson and Wragg [7, 54] discussed the maximum entropy
distributions when the first two moments are prescribed over the
semi-infinite interval [0, eo] '
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" In a series of papers, Kapur [24-27, 30] has systematically and
comprehensively discussed the characterization of maximmm entropy
distributions including the discrete distributions such as binomial,
Poisson, geomeltric, ‘generalized .geometric, discrete normal, log
series, negative binomial, generalized Poisson and Lagrangian distri-
butions and the continuous-variate distributionrs over the intervals
(—o0, ), (0, o) and [a, b] when some of the moments E(x), E(x?),
E(nx), E(ln (1—x)), E(n (1+x)), EUn (1+x%), E(nx)* are
prescribed. C ‘ '

The multi-variate normal distribution had been obtained quite
early as a ME distribution. Kapur (28, 29, 34) has also charabtc;ized
as ME distributions more multi-variate distributions including the
following : long normal, Dirichlet, inverted Dirchlet, -generalized
Cauchy, generalized gamma, generalized logistics, negative binomal
generalized negative binomial and Lagrangian distributions. Kapur
[31-33] has also obtained generalized distributions of order statistics
by using MEP. He has also obtained multi-variate distributions of
random variates when the only information available about them is °
that they are>>0 and their sum is unity. He has also obtained the
. distributions when additionally the means of the variates are known.
Kapur [36] has also obtained the distribution of cell entries in
contingency tables by regarding them as random variates;

Usually in statistics text book, one obtains every distribution
using a different set of assumptions. Karl Pearson’s was one major
attempt to get a family of distributions by obtaining density functions
ag solutions of a differential equations with four parameters. Many
other ways of characterizing probability distributions are given in
Kagan, Linnik and Rao[22]. However, maximum-entropy characteri-
zation is the most comprehensive and the simplest. '

Almost all the uni-variate and multi-variate distributions used in
statistics can be obtained by prescribing some very simple moments
and even a good undergraduate student should be able to obtain
these in a systematic and unified manner by using the maximum-
entropy principle. '

It is interesting to observe that though some of the probability
density function expressions (specially the multi-variate ones) look
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'very complicated, their description in terms of the characterizing
moments is always Very simple. Ttis also interesting to note that
statisticians have used only those distributions which can be obtained
from the MEP by prescribing very simple moments. Consciously or
unconsciously, the principles of maximum-entropy and simplicity
appear to have been the guiding principles. oo '

 The problem of finding distributions characterized by minimum
Fisherian information has also been considered, e.g. it has been
shown that out of all the distribution with a location parameter and
known finite voriance, ‘the normal distribution has the minimum

- Fisherian information and out of all the distributions with a scale

parameter and with known first and second order moments, the
gamma distribution . has minimum . Fisherian information [22].
Random sample from these disributions give* minimum information
about the location and scale parameters respectiveiy.

However, it will be more interesting to characterize distribution
as maximum Fisherian information disttibutions since we will be

" interested in knowing the distribution. random samples from which

give maximum information about location, scale and other para-
meters of the population. In optimal design theory [55], suitable
functions of Fisher’s information matrix are maximized to get .opti-
mal designs. - .

Finding minimum Fisherian Information Distribution is like
finding minimum entropy distributions because these will give, in some
sense, the most biased or the most predictable distributions in light
of the available information. However, such distributions are also
very interesting’ These are usually discrte, not unique, and the least

' likely to arise, but ahese can be useful in pattern recognition [55, 56],

* For obtaining dlscrete distributions, usually the MDI principle
in more useful because the choice of a suitable prior is necessary. For
the continuous distribution, the MEP is usually quite sufficient.
Hobson and Cheng [15] strongly pleaded for greater use of the MDI
principle and claimed superiority for it. Tribus and Rosetti [50] on
the other hand, strongly defended the. MEP. In practice, they are
based on the sameé principle of minimum bias or maximum
uncertainty and we can use either one which is convenijent ‘in a

problem.
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16.2 Estimation of Probability Distribution

Given a random sample X;, X3,-.,X» from a population with
density function f(x, 6), the principle of MDI shows that the value
of 8 which minimizes 1 [f: gl, where g is the sample distribution, is
the one which maximizes the likelihood function. In this sense the
Maximum Likelihood Principle is a special case of the MDI princi-
ple. We may even consider this as a ‘proof” of the Maximum Likeli-

hood Principle.

If the form of f is known, we find the moments for which f is
the maximum entropy distribution. Then we find the sample values
of these moments and use these as estimates for the population

parameters. .

If the form of f is not known, but the characterizing moments
are given, we can use the MEP to find the form of f.

Jaynes [16] established his entropy concentration theorem viz.
that 2N(Sm.,~S) is asymptotically distributed as chi-square with #-m-I
degrees of freedom where Nis the sizeé of the sample, m is the
number of moment constraints, and # is the number of classes. This
enables us to know howclose a given distribution with given moments
is to the maximum entropy distributions with the same values for
moments. This show show the chi-square test is a test of the closeness
of entropy to the maximum entropy. ’

_ Theil [48] has recently given another version of the minimum
information = diveragence principle. He chooses g to minimize
[f)In( f(x)/g(x))dx. When some partial information is -available
about both fand g, e.g., if the form of g(x) is givenand the moments.
for f(x) are known, and those moments those which characterize
g(x) as a maximum entropy- distribution, then he seowed that g(x)
_ has the same moments as f (x}. Parzen [45] has further discussed the
implications of this result.

'The MEP and MDIP are clasely related to the minimum chi- '
square estimation principle and the method of moments. :
16.3 Analysis of Categorical Data

The generation of hypothesis for multi-dimensional contingency
tables by using the maximum-entropy principle, has been discussed
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For the special case pz=0, auto-correlation function is the same as
the auto-covariance function.

' We now define the spectral density S:(f) by :

S f)=At E R:v("-) exP(zZn fm A1) (97)

m=—o

so that

‘(98)

St (f) and Rs (m) form a Fourier transform pair.

In practice, we have only a finite number, say 2M-+1 values,
of the auto-correlation function of a weakly stationary time series
{Xa} of zero mean. If we know Ru(m) for all m, we could fiad Se(f).
Now our problem is to. find a spectral density Si(f) which corres-
ponds to the most random or most unpredictable or most unbiased
of time series where the auto-correlation function is consistent with’
the set of known values.. This requires the principle of maximum
entropy. The MEP gives an estimate Wthh is asymptotlcally
normal and 1s asymptotically unbiased.

The basic idea of the method is to extrapolate the auto-corre-
lation function of the given time series by maximizing the entropy of
the process. The method is well-suited to thespectral analysis of
relatively short data records and as such the resolution of the method
, i3 usually superior to that obtained by using the conventiona] linear
methods. :

The maximum entropy method for use in spectral analysis ‘was
developed by Burg [2] in his Ph. D. thesis, almost independently of
the work of Jaynes. The method is described in a monograph by

o Haykin [13]. A'book, edited by Childers [4] contains a dozen

papers on MEM published in the period 1967-1978. It also contains
an extensive bibliography. The Proceedings of the First ASSP work-
“shop on Spectral Estimations held at McMaster University of August

17/18, 1981 [14] contains seven papers on MEM. 1ncludmg the paper
by Jaynes and Parzen referred to earlier.
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- by Good [12]. More recently, Gokhale and Kullback [10] have given

a comprehensive discussion of the analysis of contingency tables by
. the use of the MDI principle. Kapur [36] has discussed tbe estimation
of probability distributions of cell entries when these are regarded as
random variables.

16.4  Testing of H yp(‘)these.s" 2

The entire book by Kullgné ’x“(fgﬂ..is .devoted to . testing hypo-
theses, but it invoives Kuilbac:, 1 Lﬁ%i’er measures. It does not
‘make use of the MR} i ' '

16.5 Time Series Analysis

Oné of the most powerful applications of the maximum-
entropy principle is to non-linear spectral analysis of time series ‘data.
The statistical discrete time series :

{Xoy={1, 33,000y} (92)

represents a particular realization of a stochastic process, This will be
a weak stationary process of order two if the statistical moments of
the process upto order two depend on time differences only. The
mean of the process is : : '

'y () =E(x,) S (93)

The auto-correlation function of the process for lag m and time
origin n is given by : : '

Rz(m, n)=E(Xntm,) o (-94)

where x; denotes the complex conjugate X,. The corresponding auto- -
covariance function of the process is defined by :

Ci(m,n)=E{(xXn+n— wa{n+m) (x;—pn(n)} - 99)
.In.thé case of weakly stationary process of order two, the mean {2z(n)
and the auto-correlation function Rz (m, n) are both independent .of -
the time origin # so that : ' o

Pvz(.n)=l4a:=COI.1St,' Rz (m, n)=Rz(m), ‘ ;
Co(m, 1)=Ca(m) | S
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16.6  Estimation of Missing Data

We conclude by giving a very simple example of the application
of the MEP. Suppose we are given a set of observations X1, Xa,
+++» Xu and we know one observation is missing. What i3 the most
unbiased value for this? Let x be this value and let T be the total of
the known observations, then maximizing:

n .
X1 Xi X\ x ‘
i-:;]‘ T+x T+x " T+x %" Tz -++(99)
we get,
x= [xfl. x:2, vees x;’rq]”T

Similarly, if two values, x and y are missing, then x and y are
determined from:

’ . ' >l .; . , B
x—'_.— [xfl, x::z,'_"’ x:ﬂ, yy] y+T ...(101)
y= [xfl: X2 .., xom xe] =T -.(102)

If xlﬁxg=...x,.=pt, we get, of course, x=p, y=u, We shall
give more examples of this type in Part II.
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