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Introduction
&

I consider it a great honour to have been elected as sessional
president-of the Indian Society of Agricultural Statatics. I had the
previlege of being in the first batch of students trained by the
Institute of Agricultural Research Statistics (then .Statistical Wing of
the ICAR) about thirty-eight years ago. I also recall may.close
association with the Indian Society of Agricultural Statitics in its
first ten years.

Though I have continued my interest in the teaching of
statistics throughout the last four decades, both by direct teaohning
and through my book which has been used by over 200,000
students in India and abroad, my research interests haVe undergone a
full cycle. I started with Statistics and then worked successively in
Ballisiics, Fluid Dynamics, Operation Research, Biomathetnatics,
Pattern Recognition and Information Theory.

My current interests are mainly statistical in nature. lam
interested in stochasticbirth-death-immigration-emigration processes,
stochastic models in compartment analysis, statistical measures of
entropy and divergence and applications of maximum-entropy
principle to pattern recognition, time-series analysis, non-linear
spectral estimation, estimation of missing values and non-parametric
density estimation.

I would like to use the present occasion to make a strong plea
for a greater role for principles of maximum entropy, minimum
discrimination information, minimum later dependence, minimax
entropy etc. in the development of statistical theory.

♦Technical Address at 38th Annual Conference of ISAS, 1984.
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Statistics isconcerned with inductive inference and in particular
with drawing of inferences about populations from knowledge about
samples. The principle of maximum entropy is also concerned with
drawing of most unbiased inferences when only partial information
is availableabout a probabilistic system. , ,

In the present address, I shall discuss some of the applications
of the principles of maximum entropy and minimum discrimination.
information in Statistics.

I. The Maximum-Entropy Principle

Suppose we know that a random variable can take only, values
Xi, X2,..., x^^ but we do not know the probability with which the
;variate values are taken. The only information we have about the
probability distribution is that the sum of the probabilities must be
unity, i.e..

N

'^pi—pi+Pi+...+pM==l
•1=1

(1)

Wc have an infinity of probability distribution satisfying (1)
and >e have to have a principle to be able to choose, in some sense,
the 'best' out of these.

Laplace, very early, gave his principle of insufficient reason,
that since we have no reason to give a greater chance to one value
than to another, let us choose

Pi=P2--
1

(2)

This distribution may also be regarded as the,'most uniform'or'rhost smooth' or 'most unbiased'. or 'least committed' distribution
we can assign. Any other distribution will be less,uniform, will be
more- biased and, will imply conscious and unconscious use of
information which we do not possess and have no right to use. This
distribution also maximizes Shannon's measure of uncertainty or

.entropy ' .

. . N

•y=—S P* P* ' '
/=!

(3)

subject to (I) being satisfied. Thus we may regard (2) as the distribu
tion which maximizes the uncertainty subject to. use being made of
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the given information (1). Now suppose some divine power also
gives us the information that

N

^pi gr ixi)=ar,
1=1

r™I, 2,..., m (4)

i.e., it gives us the value of mpopulation moments where w<(«- 1).
We still have an infinity ofchoices ofprobability distributions and
we have to make a choice. Again we would like to be as objective
and as unbiased as possible. We. should like to make use ofall the
information we have and scrupulously avoid making use of any
information that we do not have. We should like to' use the whole
truth and use nothing else but the truth. According the prmciple of
maximum-entropy, we choose the probability distribution which
maximizes (3) subject to (1) and (4). Using Lagrange's method, this
gives

;)i=exp [—(x»)—(^01)

were using (I) and (4)

. N •

exp exp [—Xj g-t (xi)—•••
1= 1

(5)

—Xm gm {.Xi) ] (6)

N

Or exp gr {x,) exp [-Xi gi Ud-Xa gi (xi)-...
1= 1

—Xjn gm UOl r=l, 2,.", m (7)

From (6) we can determine X,, as a function ofXi, Xg,..., Xm and from
(7) we can determine X^, X2, •••, Xm as functions ofai, m,--, am.
Instead of (7) we can use

£ g, (a:0 exp [- Xi gi (xi) - ••• £•« (*01
1=1 — (8)

(•=>1

r«l, 2,•••,/«
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Thus the maximum-entropy probability distribution is known if the
functionss g, (x)and the expected values 0% are known for

r=l, 2,•:.,/«

2. MAXIMUM-LIKELIHOOD ESTIMATORS FOR a's

Suppose the divine power gives us only the function g's, and
not the values of a's, so that we get a probability density
function with unknown parameters oi, az,---, Um-

We draw a raridom sample of size n in which Xi may occur
k\ times, x<i may occur times, ... and X[) may occur times so

A:i-t-fc2-f.-.+A:/v==« (9)

Here, of course, some of the k's can be zero. To obtain estimates

for a>, we use Fisher's method of maximum likelihood. The
likelihood function is

L= exp {-liko -n \ g^- ... -n K gj (10)

where

N • ' N •

'LkjgriXj) L kjgriXj)
gr fci ,r=l,2,...,w (II)
^ N ' ~ n

^ kj

are the sample means of the given functions gi (x), gi {x), gm ix).
Differentiating (1) logarithmically, we get

^ ^ (InL) — 'E 4- 'E ^ 7

From (6) and (7)

exp Kl^= S ~Sj ixi)
1=]

exp

m

=-«;expA„ (13)
k~l

(12)
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From (12) and (13)

r=l,2,..,". (14)
n Sflr

;=i

Differentiating again, we get

J=1

If the determinant j 3X^/9ar I is not zero, all the first order
partial derivatives of InL will vanish if

ai~gi, 02=gz, •••, a„,=g„ (16)

and when this condition is satisfied, the Hessian matrix of the
second order partial derivatives- of InL is given by the matrix
«[SXj/3ar].

Now,

L 9flr J

8flr

_ Okj _
/m

where Im is the unit mxm matrix. Also, from (13)

9flr

and

so that

9Xj 9Xr9Xj

X exp

N

- L gkixi)
L ^=1

9Xr9Xi ^ 0Xr 0Xj
g-<(*) gr(^)

(17)

(18)

(19)

(20)
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or

. 9Ar9Xj
goix) gXx) - E gjix) grix)

=cov gjix) grix). (21)

From 08) and (21)

dOr
gjix) grix) (22)

so that the matrix [dgrld'̂ j] is the negative of the variance-covariance
matrix Z given by

Z =

var(^i) cov(g-i,ga) cov(gi, g-^)'""

cov(g2, gi) var (ga) cov(f2,gm)

^ coyigm, gi) covigmygg) var(g^m) ^

(23)

This matrix is positive definite unless the constrains are linearly
dependent, i.e., unless the set of functions

[1. (a:), ^2(;c), ..., ^m(;c)] (24)

is a linearly dependent set. We assume that this is not the case, i.e.,
we deal with only linearly independent constraints. In this case the
matrix Z is positive definite so that Z~^ is also positive definite and
-Z-i is negative definite. Thus from (17), the matrix [gXj/ea,] is also
negative definite, but this is the Hessian matrix of second order
partial derivatives of InL at the poiipts where the first order partial
derivatvies all vanish. Thus^we_establish that InL is maximum when
fli, az, ..., dm are given by gx, gz, gm.

Thus the problem of estimation of probability distribution is
reduced to the following steps ;

(i) Specify functions ^i(;c),^2(:v),

in) Based on a random sample ofsize n, find ^, g2, g„.
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(iii) Find the probabilities by using

1=1

(fv) Find Xi, Xa, •••, Xm ia terms of Ux, a, am from (8).

(v) Replace fli, a^, am by gi, gz, •••, gm.

H. MINIMUM CROSS ENTROPY (iNACCURACY)
AND MAXIMUM LIKELIHOOD

If we have reasons to believe, on the basis of institution and
experience, that the probability distribution before the moments are
prescribed, is given by quqi, --,lN rather than by the uniform dis
tribution, then we choose PuPZ,--,Pn in such a way that this distribu
tion is as 'close' to q„ q^,-, q^ at possible and at the same time satis
fies the given constraints. For this purpose, we minimize Kullback's ^
information discrimination function

i=;

subject to the given constraints. The equations (5), (6), (7) and (10)
are modified to

Pi=qi exp [- Xo-Xi (^i) ->^2 gi (xi) - •.• - (^/)1 (27)

exp Xq= S Si ix,)-...-K gm (^i)] (28)
/=1

(25)

exp Xo «r= qi gr {xi) exp [-Xi gx (x,)- -Xm (x,) ] (29)
1=1

I'=(?1, ?2,exp (-AT XD-iV>^^i (30)

The values (16) still give the maximum jlikelihood estimates for the
parameters.
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4. COMPARISON WITH FISHER's THEORY OF ESTIMATION

Given a set of observations Xt, Xs -.xn-, Fisher regards these
as a random sample from a population and the aim of his theory is
to get, from the sample, as much information about the population
as possible. His three Steps are :

(0 Specification : i.e., specify the density function of 'the
population, say/(x, a^, This can be done on
the basis of intuition and experience.

{a) Estimation-. YiQK the parameters a-i., have to be
estirnated as functions of the observed value j*:i,:!C2...,:!Civ.
Fisher laid down the criteria of consistency, efficiency and
sufficiency and gave the, method of maximum likelihood
whichgives estimates that, in general, satisfy these criteria.

{Hi) Distribution: Here the distributions of the estimates in
random samples as obtained in order to determine how
good the estimators are :

The critical difference between Fishher's Method of Estimation

(FM) and the Maximum-Entropy Method (MEM) of estimation is in
first step. Whereas Fisher's method proceed? by.specifying the density
function, MEM starts by'specify certain moments corresponding to
the functions gi,

Since we can have a large number of density functions with the
same moments, we use the MEP or MIP to get a unique most unbia
sed distribution with these moments. Thus, while FM specifies/
directly, MEM specifies gi, 'g>---gm and then uses MEP to deter
mine /.

In both methods, the population values of the parameters need
not be given, but can be estimated in terms of sample values by using
the method of maximum likelihood. The estimation is easier in the

MEM since here the maximum likelihood estimators for Ci, az--.am
are gx, g2,.--gm and can be obtained at once. In FM, for every
density function, we shall have to obtain estimates for fli,
by solving equation didar {lnL)=0, dc novo in every
case. • /
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There is no objective method for specifying either/or gi,g2,.:,
gm- It may even be argued in favour of FM that specifying the func
tion/may be easier than specifying w functions gx, g2,-.-gni. That
this is not so is seen by considering that /determines gi, g2,---, gm.
uniquely, butgi, ga,--, do not determine/uniquely without the
use of the maximum entropy principle Thus, in somesense/contains
more information than g's and its specification should require greater
divine assistance than specifications of g's.

Actuallyspecification of / implies the specification of all infinity
of moments while specification of g^S requires the knowledge of only
a finite number of moments. In most cases m=l or 2.

In many practical problems knowledge of / implies the know
ledge ofmicroscopic structure of a population, while knowledge of
g's implies only a knowledge of some macroscopic observable qunti-
ties. The moments can be interpreted in terms of some measurable
entities. Thus, in thermodynamics, these may stand for average
energy or temperature or pressure; in social sciences these may
stand for budget or number of jobs, or number of hours, etc. In
fact, in these cases specifying moments is realistic while specifying/is
much more difficult to interpret.

distribution

FM FM

\

moments > maximum
MEM likelihood

estimators

The above figure illustrates therelation between thetwo methods.
In FM we go from thedistribution to the moments and the maximum
likelihood estimators. In MEM we go from the moments to distribu
tion and to maximum likelihood estimators.

In almost all cases, the "choice of g's is confined to the functions
. X, ^2, x", Inx, {Inxf, ln{l+x). In (1-f | x-m \ (31)
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For specifying/, the choice is much larger. Eventhecatalogue of
standard distributions is large and one has to be suflSciently familiar
with all these distributions in order to be able to tiiake an intelligent
specification in FM.

5. , DERIVATION OF STANDARD DISTRIBUTIONS BY USING
MAXIMUM-ENTROPY PRINCIPLE

One way of preparing a catalogue of standard distributions is
to find all the maximum-entropy distributions which can be obtained
when expected values of one or two of the function given in (31) are
prescribed. The ME distribution will also depend on the range of
values permitted for x, e.g., on whether x takes on a finite and discrete
set of values or x can take all values in a finite interval (a,b) or in a
semi-infinite interval (0, co) in the infinite interval (—oo, oo).

The distribution will also depend on the a priori probability
density function that may be specified.

Muki-variate distributions may be obtained either by :

(i) specifying covariances between pairs of variates, or by

{it) specifying expected values likeE (xi+:*:3+ •••+:*:&), or by

{Hi) specifying a relation among the variates, e.g., by specify
ing jvi-fxa-{-...I, or by ,

(iv) specifying an order relation among the variates, e.g., by
specifying

and then by applying the MEP or MIP.
/

For the discrete case if the a priori probability distribution is
given by q^, q2,--,gm and the constraints are given by

N, N •

S P/=l, Ti Pi grXxi)=ar, r=l,2,...,m (32)
Ml /•=! . .

then the ME or MI distribution is given by

j?,=5', exp[-Xo-3^igr (;*:;)] (33)
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where
N

exp Xo= 2 exp [—(x,) - •••—K gm U/)] (34)
/=1

N

Or exp Xi,= S gT (xi) exp [-Xi gi (x,)-...gm (x,)] (35)
1=1

r=l,

For the continuous case, if the a priori probability density
function is/o(x), then

fix)=fo (x)exp gi (^)- •••—gm (^)] (36)

[b
exp >^0= /o (^) exp [-X] g-i (x)- ...—Imgm (:«)] dx (37)

(b
a, exp Xq= Ux) exp[-Xi gi(x)- Xm ^n.(>:)] dx (38)

We now give some distributions obtained by using these results.

6. Maximum-Entropy Discrete-Variate Probability

Distributions

Range of
Variate

1, 2, 3,---,n

1, 2, 3,...,n

0,1,2,3,...,«

I, 2, 3,...,«

Sepecified
Moments

mean m

mean

mean m

0,1,2,3,." meanm

1,2,3,... mean

1,2,3,... mean m

Prior
Distribution

uniform

(n
improper
uniform

,{iO-'

z-i

,-d

MElMI
Distribution

Pi

Name

n

L r J

ab^

«

ab^

e m Jfli

~n

_ 1 g'
/«a-q) i

Sg*

uniform

geometric

pi q»-^ binomial

geometric

. Poisson

•Log Series

ll id
1=1

generalized
geometric

A-
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7. Maximum-Entropy Continuous-Variate
Probability Distributions

(a) Range (—0°, 00)

Specified Moments

E ix)

E(x^) = (r2

E{.x)=m, E{x-mf=o^

E{x)=m, E{x^)=

E{x-x)^=c^

E{xn=a,

r=l,2,...,k

E( I ^ I )=(7

E( I x-m I )=CT

E {x)=m
E I x—m I =£'

E-Sh (!+;«'')

{b) Range [0,oo]

E{x) ,

Eix), Eilnx)

E(x), £•[/«(!+Jc)]

Eilnx), EQnxf

Eln{l+x^)

E{x\E{x^)

Distribution

Does not exist

N{0,o^)

N {m, o^)

Nim,d')

N{m, CT?—

a^) (m arbitrary)

Does not exist if k is odd

fix)=exp[ - Xo - Xi:*; —... —
if k is even

Laplace

Laplace with mean m

Laplace with mean m

Generalized Cauchy

exponential

gamma

beta

log nonnal

utilateral generalized Cauchy

truncated normal if o^K.rr?

exponential if <y^=m^
does not exist if a^>m^
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(c) Raage(0, I)

specified Moments

nil

mean

E W, E(x2)

.E{lnx), E[biil-x)]

Distribution

uniform

truncated exponential

truncated normal or

truncated u or uniform

depending on prescribed
values

beta

8. MAXIMUM-ENTROPY MULTIVARIATE DISTRIBUTIONS

8.1 Discrete Variate Distributions

, If the variates take integral values 0, 1, 2, 3,..., if the mean of
each variate is prescribed; and the prior probability distribution is
given by :

(ri+/-2+•••>•„) ! .
Ti 1 r2 ! ...r„ !

then the maximum-entropy probability density function is given by :

s . ('•l+r2-f...r„) !„r, „r% „r„piri,r2,...,r„)== A !-r„ 1

where

is a normalizing constant, and

q's are to be determined in terms ofthe prescribed means. We
get the following special cases ;

(0 If ri+r2+ ..+r«=iV, we get the multinomial distribution ;
(ii) If ri. r2,..., rn "take all non-negative integral values, we

get :

^ ^ »'i+r2+----l-rn) !
r2,• ••,r„)=(I—-^2—•••— |

X q'r'

r,>0; gi<\', g'i+9a+"-+?/i<I (40)
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This gives the multivariate geometric distribution ;

(Hi) If ri, r2 tn takes all non-negative integral values except
that ri=r2=--. = r„= l is not allovi'ed, we get :

C l-gi- (^i+ra+•••+/•„)!
y\'l9 I , , . Ill

?i+^a,++ /"i! ral-.-r,,!

X qh qh ... q'n (41)
i. ^ fl •

(iv) If fu r2,...r„ takes all positive integral values, we get:

gi+92+--'+^'n Ti!

X qh q''2 ... CT n
^ 2 n

(42) .

If in addition to prescribing the arithmetic mean of each
variate, we also prescribe E [/«(ri+r2+--.+r„)], then the maximum-
entropy density function is :

piri, r2,:..,r„)^ J ^ (^i+^a+'-'H-rH)!
rj! ra! ••• r„!

where

Viq, d)

... q\ (ri+r2+...+f„)^

^—?i+(i'2+•••?«, and

i'(.q,d)= Yi I
/=1

O^O; all r's not zero

(43)

If d—0, this gives the multivariate geometric distribution.

If d=~l, this gives the multivariate log series distribution :

An, tz,-, r„)= 1

Snii~qi~q2-...-q„)

-^fr.+..+...+0!
r-il rzl ... r„\ ' ^ «

If we take other values of d, we get the family of multivariate gene
ralized gemoetric distributions.



26 JONRNAL OF THE INDIAN SOCIETY OP AGRICULTURAL STATISTICS

If we take the prior as :

(ri+ra-. + fn+M-D!
ri! rzl ... r„!

and prescribe the means only, then we get the raultivariate negative
binomial distribution :

. . Q-M r(M+ri+2+-+/•»)
• P^''ur2,...,r„)- r,!ra!... r„!

X
"Pi'' ri Pn ^ n

IQ- IQ-
(45)

Similarly, we can obtain the multivariate generalized negative bino
mial distribution ;

where

where

, . ^ r[M+i3(ri+>-2+...+r„)] .P(ri,r2,..;rn)--C £'[M+(p-l)(ri+ra+... + r„)]

...

ri! r2\-.r„\

C=(l+2)-^

= q=qv\-q2+---qn
(l+z)P

If we take the prior as:

ri+r2+...+fn

ri! n\---rn\

(46)

(47)

and the means are prescribed, we get the multivariate Poisson
distribution :

N efgi+flz+.-.+gJ ri+rz+.-.+rnp{rur2,....r„)= nlrzl-.rj.

xq:Mf ... <?;- (48)
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8.2 Ciiatlnuous-Variate Multivariate Distributions

.11

(1) If the range of each variate is (-op, oo), and if the means,
variances and covariances are all prescribed, themaximum-
entropy distribution is the ' multivariate mormal distribu
tion. -

(2), If the range of each variate is (0,oo), and if Eilnx^
E{lnxif, anA co\ {Inxi, Ittxj) are all prescribed, the
maximum-entropy distribution is the multivariate log
normal distribution.

(3) If Eiltixi),, E^ltixz), Eilnxn~i), EiIn(l^Xi-X2-...
are prescribed, and eachX;^0, and *x+:s2-f-...+

JCn-ij^r, the maximum-entropy distribution is the Distri-
chlet distribution.

(4) If Eilnxi), EOnXi),..., {Elnx„-i), £(/K(Hr:x:i+....+x„_i))
are prescribed and air Xi>0, the maximum entropy

distribution is the multivariate beta distribution of the
second kindv

(5) If in (4) x,=e~''i , we get a generalized multivariale logistic
distribution of which the ordinary logistic distribution is
obtained as a particular case.

(6) If £(lM(l+xf+Jc|+ ..-:«|)) is prescribed, we get a genera
lized multivariate Cauchy distribution of which theordinary
muhivariate Cauchy distribution is a special case.

(7) Ifthe only, information about the variates is that and
jCi+X2+...+;«n=I, then the maxiiiium entropy density
for the ith variate is («-1) (I-x,)« and the joint density
for two variates is (n— 1)(«—2) (1—Xj—ifj)" ®-

(8) If, in addition, the means of the variates are also prescrib
ed, the maximum entropy density for each variate is the
sum of exponential functions.

(9) If£[/(x)]is prescribed foreach variate and, in addition,
"We are given that .we can find.the
distribution of ordered statistics. In the usual discussion,
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all the unordered variates are supposed to be independently
and identically distributed. In our case, they need not be
identically distributed.

(10) In general, to get a multivariate distribution using the
maximum entropy principle, we have to prescribe
£(;ci+X2+...+x:n) or prescribe some expected values of
some functions of xi, In addition, we have to
prescribe the expected values of functions of x, separately.

The properties ofmost of the univariate and multivariate
distributions obtained here are available in Johnson and
Kotz [19 -21], Consul and Jain [5], Consul and Shenton
[b].Jain and Consul [16], Patil and Joshi [43]. and Pati),
Kapadid and Bowen[44].

9. Entropy-Concentration Theorem

Let Po={pw,PM, •••,Pna) be the maximum-entropy probability
distribution and let P= (pi, pz, •••, Pn) be any other probability distri- ^
bution consisient with the given constraints. Let Stmx and S be their
respective entropies and let

AS=S„,.-S . -(49)

Let C be theclass.of all probability distributions consistent with
the constraints, then in this class, Pq has a favoured status. It is most
unbiased since it does not make use of any other information than
what is given by the constraints. The distribution P can be obtained
only by using some additional information, consciously or unconscio
usly. Pa is also as near to the uniform distribution as possible since
it minimizes the directed divergence between P and the uniform
distribution (l/n, l/«, V«)-

The following questions naturally arise :

(1) Can we measure the degree of bias ofP? Can we use AS
as a measure of bias ? Which will be best; AS,
AS/S„,„;c, AS//« n, and why ?
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(2) What proportion ofprobability distributions in Chave their
entropies greater than .9.- 5'„,„ or >.9 or>.5 ?
Will this proportion depend on the nature of the cons
traints or on their.numbers only ?

(3) If we consider n-dimensional space with coordinates
(Pi, P2. •••, p„), then the set ofpoints corresponding to the
class Cfrom a closed convex set (why?). Can we consider
AS' or

-(50

as the distance ofany point in it from the point correspon-.
ding to the maximum-entropy distribution Pq ? Can we
say that Pi ismore biased than if A5i> A '̂a ?

(4) Can we find the additional constraint or additional infor
mation presumed which can make P a maximum-entropy
distribution ? Can we at least find the measure of infor
mation contained in this constraint ?

V" . Jaynes [18] gave the following entropy-concentrationtheorem as a step towards answering these questions:

In random trials, 2iVA5 is asymptotically distributed
as chi-square with k=n-m-l degrees of freedom."

Thus, we get :

5C| (.01)Sma:, 2^ ^ ^

= .95 ...(51)

- .99 ...(52)

so that there is an'entropy fiducial interval' of thength (P)/2iV
with confidence coefficient' \-P. The length of this entropy
interval:

(1) decreases fast with N, in fact, it decreases inversely as N-,
(2) increases with confidence level-
(3) increases with n;
(4) decreases wih m.
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The probability distribution P'm Cfor which the entropy Slies
outside the 99% entropy interval is not likely to arise. In fact, a
more correct statement would be that value of P strongly suggests
the existence ofan additional constraint on the system and urges us
to search for it.

Thus, for an unbiased die, Smax'=ln6=\.192, k=5, M=1000,
X2 (.05)=11.07, (.005)=16.75 .so that 95% entropy interval is
(1.786, 1.792) and 99.% entropy interval is-(l.783, 1.792) so that if
the entropy of the observed distribution is less than 1.783, we can
rule out the possibility ofthe die being unbiased.

We can now introduce another constraint that the mean is pres
cribed We throw the die a large number of times and observe the
mean number of points. Suppose it is 4.5, It can be shown that in
this case, is 1.614, fc=4, (0.05)=9.49 and the 95% confidence
entropy interval is (1.609, 1.614). If the entropy of the observed
distribution is less than 1.609, it indicates the existence of another
constraint or it may suggest that a constraint prescribing a moment
other than the mean may be operative and we may look for it.

We may note that Jaynes' theorem is asymptotically valid, i.e.
valid for large values of N only.

For smaller values of N, it may sometimes be possible to do
complete enumeration. Thus for 20 throws of a coin, the 2'"'=10
possibilities are distributed as follows-

# of heads 0/20 1/19 2/18 3/17 4/16 5/15 6/14 7/13

# of states: 1 20 190 1140 4845 ^15504 38760 77520

# ofheads: 8/12 9/11 - 10/10

# of states: 125970 167960 184756

Thus, the number of ways is maximum for 10 heads and 10 states,
and this the most likely state to occur. In fact 9 and II heads have
also a large number of ways associated with them and these states
together account for more than 50% of the total number of ways.
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based on the concepts of «-diraensional space

Anamtytka^Drrr"'̂ —n^ajytical proofj^ given mthe ne^ which shows that if
The JrJf''"' h ,AI IS also distributed as chi-square with /t d.f.The proofcan be easily adapted to measures of entropy other thanShannon s, provided these are concave functions.

10. MAXIMUM ENTROPY, MINIMUM INFORMATION, MAXIMUM
LIKELIHOOD AND MINIMUM CHI-SQUARE

" n •AS=Sma^~S=- p.^ pjnp,
/=! /=]

j=l FiO

=ipiln^+i^{p,-p,,)
»= 1 Pl<i i=z\

r-:\o-Al gm fe)]

i=l Pia Pi

-- L Pi H
/=!

n

=- TiPi
i=l

T-f PiO~Pi
Pi

Pio—Pi iPio+Pif , ipio—pif
P' 2pf ^ 3pf

=:J- (Pig -Pif J ^(Pio~P,)^ .
hii p, • 3,i;—^+-

=JL •£(pio—piVr j_j_ Pio-Pi
2;=1 Pia L Pi

__L£ {pio-pif
^ /=! Pio 1+

PiO~Pl

Pi J
+ ...

=± £ ± ^ ipi,-pd^
2/=! Pio 6 pI - ^53)
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Similarly,

Pi _ V n.„(SI—I Itiiin Pi ,S P>^ qf
/=i ?= 1

" /?«0
L/', /" „-+ L (pi-p>o) injl

, = 1 FiO /=1

n

Pi- ^pi In —+ S ipi—pio)
i= ], PiO (= 1

X[—Xo~^i g'lUi)-—••• S'»

=£p^ 'niti P^o

1 ^jp^o-pi)' , J_y(P<o-P^y ^ ...(54)
^T,it P^o ^6,-it P%

As such up to a first approximation :

since Npi are the observed frequencies and Npio are the expected
frequencies. Again, since there are m+1 constraints, the number of
degrees of freedom is n-m-1 =k.. This gives the proof of Jayne s
entropy concentration theorem that 2N- AS (or 2NLI is distributed
asymptotically as chi-square with kd.f.

The proof also gives an interesting interpretation for the chi-
square which is now seen to represent twice the difference between
the observed entropy and the maximum entropy. Many statisticians
have lamented that in spite of its usefulness, chi-square does not
represent anything meaningful. In fact, chi-square is intimately
connected with entropy maximization. Akaike [1] considered this as
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a cohfirmation of his thesis that "some of the most sigtiiflcant
successes, in the history of statistics were obtained when the statisti
cian was directly dealing with the entropy and itsmaximization.".

Now, let there be # independent trials and at each trial let
there, be « possible results w;th probabilities PuP2,.-,Pn depending
on the parameter (i. If Xi, xz,..., x„ are the observed frequencies,
the likelihood function is given by :

L(xi, X2,.-,Xn,i>.)= - Py (56)

lnL= In fSx. /« I-+Xi! ;*:21 ... x„l
/•=!

= In C—Yi Xi In ^

where C is independent ofpCs and therefore of (a. Since :

i;,NPi=N,
1=1 i=l

Xi

(57)

(58)

by Shannon's inequality, the second term onthe right>0, and it will
vanish iflf;7,=*,/iV so that lnC>lnL so that C is the maximum
value of L for variations in Pi's. Thus,

or

In L= In £ ;c, /I 1+
i=l L _

p —NPj—xi 1 ^ Npi—Xi~'̂In Ltnax'̂ £ Xi
/=1

Xi 2 /=i - xf ^
+ ...

(59)

»=1

(60)

3 /it 4

Lmax 2 •
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where

5^2 iNpi~xif (61)

which differs only slightly from :

(62)
^ i=l NPi

and

^Pio

{Np-XiY (g3)

where is an estimate for By minimizing Xf or X| or Xf with
respect to [a, we can get minimum chi-square estimator for it.

This discussion connects chi-square with log likelihood function.
Earlier we had related it with change in entropy so that we get:

2N ^S=2N Al = 2AlnL =Xs (64)

or

2NiSma.-S)==2N{I-I„un)=2{£r>L^a^-lnL) =t\ (65)

This relation is true only asymptotically for large values of N.
However, it gives a basic relationship between methods of maximum
entropy, minimum entropy, maximum likelihood and minimum
chi-square.

This gives an alternative method of defining entropy. Devia
tion from Maximum Entropy is the deviation from log maximum .
likelihood per trial. When observed frequencies are equal to expected
frequencies, L=L,„ax, S=Smax, I=Imin-

Another important link between maximum-likehood, chi-square
and Kullback's directed divergence is provided by- the following
result of Kuppermann [39J.

Let Xi, be a random sample from an exponential
population with density function:

P(x, 0)=?(x) r(9) exp
L ;=1

(66)
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where x is a k-dimeasional aad 0 is aa h-dimeasional vector. Let

0 be the maximum-likelihood estimator for then:

(67)

is distributed asymptotically as chi-square with k d,f.

According to the minimum information divergence principle
we usually arc given g{x) and we seek to find/(;c) minimizing :

/(/: „m In dx =j" ^f(x) lnf(x)dx

^ fix) lng(x) dx (68)

and satisfying certain constrains. Alternatively, we may be given
Ax) and we may seek to find so .that we have to maximize;

- [In gix)]f{,x) dx= ^ ^ In g{x) dF{x) (69)

Now let X\, X2, x„ be a radom sample and let F(x), —oo<;c<oo
correspond to the sample distribution defined by:

F(x)=fTdctionof xi,x^^ X (70)
so that if jvi, X2, x„ are in increasing order, we have

F(x)=0 when ^<Xi, F(x) =j-, x^ < ...,
/W=I when (72)

and (69) becomes :

n.Jj g(xi) (72)

Now let the density function g(x) be indexed by a parameter 6
so that g{x,Q) IS a known function with an unknown parameter 0so
that we have to choose 6so as to minimize:

_ 1_ « ,
- „ In g(xi, e)~ —log L(x^, X,, x„, e) . (73)
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where L is the likelihood function so that minimizing the divergence
information of ^(jc, 6) from f(x) (where f{x) corresponds to the
sample distribution) is equivalent to maximizing the likelihood
function. The function defined in (69), i.e.,

H{g-.f)=- Ing(.x, Q)fix)dx (74)

is called the cross-entropy ofg and / and we have minimized it to
choose 9-. For the discrete case, we get the expression:

- YiPi
1=1

which is called the inaccuracy [41]. In fact, we have

V Pi In - ^pi In qi -
/=!

-^piln pi
L ,=i

\1. /«'" fix) Ing(x) dx

fix) Infix) dx

so that

Iif:g) = Hig.f) - Hif:f)

or

(75)

(76)

(77)

(78)

Information Divergence = Cross-entropy - Entropy ('9)

This i-. an identity if Mg. If g(x) =i, it shows that minimizing
information divergence in this case would give same results as
maximizing entropy.

Our discussion shows that maximum likelihood principle can be
regarded as aspecial case of the minimum information principle.
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12. COMPARISON WITH METHOD OF MOMENTS
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The Maximum Entropy Principle Method of Estimation has
same similarities with the Method of Moments used by Karl Person;
but which was strongly criticized by Fisher. Fisher assumed that he
had the correct model/(:*:, 9i, 0a,.".Q,,) and his object was to estimate
the parameters fli, He gave the method of maximum likeli
hood and the criteria of consistency, efficiency and sufficiency and
showed the superiority of his procedure over that of method of
moments. This superiority was based on the assumption that the
correct/ was known [8, 42].

Pearson did not have one model, but a family of models in
, terms of his family of curves. He chose a member with four para
meters and compared the first four moments of the observations
with four moments of the distribution to get the estimates for the
four pirameters. Later he carried out a goodness of fit. If the fit was
not good, he proceeded with another family of his family.

Pearson used E(x^), Eix^), E{x^), E{x'̂ ). In MEM. we also
consider moments, but we also consider Eilnx)"', E{lnx)^, Eln{hx),
etc.,. Pearson's method could lead to the family of maximal-
entropy distributions :

fix) = exp[—Xq— (80)

This leaves out a large number of other distributions occuring in
practice.

The main difference between the MEM and the MM is that the
former has a sound theoretical principle to back it.

The MEP gives us which moments we should calculate from the
data in order to estimate the parameters. Thus, for the beta distri
bution, we should calculate geometrical means of x and \-x. For the
gamma distribution, the moments to be calculated are the arithmetic
and geometric means of the observations.

T3. GAUSS'PRINCIPLE OF ESTIMATION

Let/(x,fli, fl2,•••,«»>) be the density function and let

ElgrixYi^Or, r=l,2,...,m (81)
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then Gauss' principle considers those density functions for which the
maximum likelihood estimators for fl, are :

«r=-i-...+g'.(x«)] (82)

Gauss considered the.particular case of normal distribution only. It
is obvious that Gauss' Principle of Estimation and Maximum
Entropy Principle are equivalent. It can be shown that.Gauss' princi
ple leads to the exponential family of distributions and vice versa
[3,35].

For exponential family members, the calculations of maximum
likelihood estimates is relatively .easy. For others it is relatively
complicated. In fact, in the earlierstages the MM was sometimes pre
ferred because it led to easier calculations. With the advent of
computers, this advantage of the MM was lost. However, the
representation of distributions in Monte Carlo studies, when only
moments are known, borrows from the ideas of Karl Pearson and is
strengthened by the Maximum Entropy Principle.

14. CONTINGENCY TABLES

For an mX n contingency table, in which all elements and totals
are divided by the grand total, let 5i, S2 and Sii denote the entropies
of the marginal totals distributions and of the complete table. Then
it is easily shown that :

n jn

-S'i2+*S'i+S'2= 2 Pij
y=l/=!

Pu

pi. p,j
(83)

which >0 by Shannon's inequality, and vanishes only when Po^Pi-
Pi, i.e., when the two attributes are independent. Thus, Sx+Sz—S-^z
is a measure of depsndence in the table. Substituting in (33)

Pij=Pj- P-j+eu,

we get:

n in

iS'i-l-S2 —Si2= — ^ pij
; = 1 / = !

-4 SL

1-
Pij J

pij~pi. p.j

2y=j ,-=1 L P' P-i

(84)

(85)

X
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.SO that up to a first approximation 2 (Si+Si-Sii) is distributed as
.. chi-square with appropriate degrees of freedom, and chi-square test

appears as a test of 'closeness' of the entropy of the table to the
entropy calculated on the hypothesis of independence of attribuies.

For a dixdzx.-.xdk contingency table, we find similarly that
2(81+82+ ...+Sk—Si2..., k) is distributed as chi-square. Here 81,82,

Sic are entropies ofthe marginal totals and S12..., his the entropy
of the table as such.

We can similarly calculate entropies for other hypotheses of
independence, e.g., of no second order interactions, of no third order
interactions orofconditional independence oftwo attributes, know
ing the third and then express the difference in entropies in terms of
chi-squares [10, 12].

For transportation problems [23, 53J, let xu denote the propor
tion ofpersons going from i"^ origin to the destination, then
maximizing :

subject to ;

n m

~ £ X %
;=1 (=1

n m

Xi,=Xi=Oi,'^ XH=x.j=Dj,
J=1 1=1

/=! ;=1

we get :

Xij^Ai Ox Bj Dj

and the maximum entrop;' is given by:

1=1 i=i

' n n
- S x.j In x.i - 2 x.j In Bj+^C
HI /=!

(86)

(87)

(89)
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n in

Thequantity 2 S,„«;t+S Ti Xij In Xij
L 7=1 i=-r

with {m— 1) («—1) —I degrees of freedom.

is distributed as chi-square

Deeper results are obtained if we do not regard xy's . as fixed
numbers, but rather as random variables satisfying constraints (86).
We can then use the principle of Maximum Entropy to obtain the
maximum entropy distributions of :sc<j's, both individually and
jointly [36]

15. Some Historical Perspectives

When Shannon [47] discovered in 1948 his measure of
n

uncertainty or iaformation given by—^ Pi Inpi, he first thought of
i=l

calling it 'information', but he felt that this word was already over
worked, 90 he consulted the great mathematician Von Neumann
about the name for this measure. His response was direct, ''You
call it 'entropy', and for two reasons : (l) thefunction is already in
use in thermodynamics under that name; (2) and more importantly,
most people do not know what entropy really is, and if you use the
word 'entropy' in an argument, you will win every time 1" [51].

In retrospect, the advice appears to have been unsound on both
counts. Shannon had discovered a measure for uncertainty associated
with a probability distribution and the only thing common' between
his measure and thermodynamic entropy was that they had a common
mathematical expression. Even in 1948, the expressions for entropy

for Bose-Einsteia and Fermi-Disc distributions were different from

—£ A ^npi- Later it was established that the thermodynamic entropy

could be obtained from information-theoretic entropy through
principle of maximization of entropy.

the

However, the word entropy has been so well-entrenched in
thermodynamics that even after. twenty-five years, many persons
consider the maximum-entropy principle as a principle of thermody
namics. The misunderstanding has been partly caused by the fact
that the maximum entropy principle was first stated in 1957 by E.T.
Jaynes [17] in the context of statistical mechanics. Also, in this
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way the maximization of entropy eame to be associated with the
second law of thermodynamics which states that the entropy always
increases.

The unfortunate nomenclature may have been partly responsible
for this principle not obtaining its rightful place in statitsical theory
Jaynes [17] did say that he would consider entropy as equivalent to
uncertainty. If he had gone a step further and had called his principle
The Principle of Maximum Uncertainty, statisticians might have
looked at it more closely because uncertainty is certainly the subject
matter of statistics. Even if had called it The Principle ofMinimum
Bias, statisticians would have been interested because many statistical
investigations are motivated by the consideration ofminimizing bias.

Kulkback and Leibler [38] in 1951 gave themeasure I (1:2) for
discrimination between hypotheses ZT] and the MDI principle
was not stated here. It wasnot stated by Kullback even in his book
[37] published in 1959 where he stated : "Information theory is
relevant to statistical inference and should be of basic interest to
statisticians. Information theory provides a unification of known

y results, and leads to natural generalization of known results. The
subject of this book is the study of logarithmic measurts of informa
tion and their application to thetesting of statisticsl hypotheses.'

Kullback concentrated exclusively on the testing of hypotheses .
and this became the main application of information theory in

, statistics. Kullback did not refer to Jaynes' work. We have of
course, to make a distinction between application of information
theory and applications of the maximum entropy principle and the
MDI principle. The motivation for the MDI principle came much
later jointly from Jaynes' maximum entropy principle and the
Kullbick-Leibler discrimination information number.

In statistics, Fisher [8] had defined information prior to
Shannon. He considered the object of statistical inference to be to
get as much information about the population as possible, ideally the
whole of the information contained in the sample, but then proceed
ed to give a technical definition of information. The main goal of
statistical inference was not worked out in detail in terms of this
definition of information, though in the theory of optimal designs,
the maximization of the determinant of the information matrix is
considered.
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If/U,0) and/(:)c,0+A0) are two density functions, wiiere 0 is
a vector, then it is easy to show that : i -

• I(0„6+A0)=yI; Ae« ASg (90)

Where

are the elements of Fisher's information matrix.

For the case of a single parameter, this shows that the greater
the value of Fisher's information, the greater is the information for
discriminating between /(x,0) and/(;v,6+A9) and so the density
function fix,6) can be clearly determined.

Although Fisher's and Shannon's concepts of information are
related, the prior introduction of information by Fisher may have
inhibited statisticians from exploiting fully the powerful and general
concept given by Shannon, with the important exception ofKullback ^
who exploited it fully for generating known results about testing of
hypho theses.

Jaynes' work showed that statistical mechanics was more of a
statistical theory than physical theory aad this could have led to
statistical mechanics being considered as a branch of mathematical
statistics. Oa the other hand, the use of the word 'entropy' almost
led to the feeling that the use of the entropy concept, on a large
scale in statistics, may make mathematical statistics a braiich of
statistical mechanics !

Whenever the principle of maximum entropy is used in eco
nomics, geography, urban structure studies, marketing, etc., a feeling
is unfortunately created that some arguments by analogy with
physics or thermodynamics are being used, while essentially one is
using probabilistic or statistical arguments.

Earlier we said that both the arguments of Von Neumann for
recommending the use ofthe word 'entropy' were unfortunate. The
first argument created a lot ofconfusion and misunderstanding. The
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second agrument was right; the use ofthe word entropy created a lot
of mystery and awe and always enabled one to win an argument.
However, ti delayed nhe penetration of s(atistics by this principle and
the power of this principle could not be exploited in statistics. By
using the word, one may create the feeling that one is using the laws
of physics, while one may be using only the laws of uncertaintly and
of statistics. Winning an argument is not as important as winning
scientific truths.

16. The Role of Maximum Entropy Principle in Statistics

The Maximum Entropy Principle has been used in the discus
sion of the following problems in statistic:

(1) Characterisation of Probability Distributions;
(2) Estimation ofProbability Distributions;

(3) 4nalysis of Categorical Data;

~y' (4) Testing of Hypotheses;

(5) Time Series Analysiy;

We discuss these in turn below. In the present paper, we have
discuss (1) and (2) in detail and (5) partially. In part II we shall
discuss (3), (4) and (6) morefully.

16.1 Characterization ofProbability Distributions

Rezal46] and Goldman [111 obtained uniform, exponential,
gamme and normal distributions as maximum entropy distributions.
Tribus [49] derived these and also beta and truncated normal distri-
butions, but stated that Cauchy and Weibull distributions could not
be dedtbed from the maximum entropy principle. Kagan, Linnin
and Rao [22] characterized these as well as the Laplace distribution
as,maximum entropy distributions through the MEP. Lisman and
Van Zuylen [40] gave maximum entropy characterization of geome
tric, chi-square, Cauchy and Weibull distributions, as well. Gokhale
[11] also gave maximum entropy characterisation of some distribu
tions. Dewson and Wragg [7, 54] discussed the maximum entropy
distributions when the first two moments are prescribed over the
semi-infinite interval [0, co]
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In a series of papers, Kapur [24-27, 30] has systematically and
comprehensively discussed the characterization of maximmm entropy
distributions including the discrete distributions such as binomial,
Poisson, geometric, generalized geometric, discrete normal, log
series, negative binomial, generalized Poisson and Lagrangian distri
butions and the continuous-variate distributions over the intervals
(—CO, co), (0, go) and [a, b] when some of the moments-ECx), E{x^),

EQnx), E{ln (l-x)), E{ln (l+;c)), E(Jn (I+a:'-), Eilnxf are
prescribed.

The multi-variate normal distribution had been obtained quite
early as a ME distribution. Kapur (28, 29, 34) has also characterized
as ME distributions more multi-variate distributions including the
following : long normal, Dirichlet, inverted Dirchlet, generalized
Cauchy, generalized gamma, generalized logistics, negative binomal
generalized negative binomial and Lagrangian distributions. Kapur
[31-33] has also obtained generalized distributions of order statistics
by using MEP. He has also obtained multi-variate distributions of
random variates when the only information available about them is
that they are>0 and their sum is unity. He has also obtained the
distributions when additionally the means of the variates are known.
Kapur [36] has also obtained the distribution of cell entries in
contingency tables by regarding them as random variatesl

Usually in statistics text book, one obtains every distribution . ,
using a difiFerent set of assumptions. Karl Pearson's was one major
attempt to get a family of distributions by obtaining density functions
as solutions of a differential equations with four parameters. Many
other ways of characterizing probability distributions are given in
Kagan, Linnik and Rao [22]. However, maximum-entropy characteri
zation is the most comprehensive and the simplest.

Almost all the uni-variate and multi-variate distributions used in

statistics can be obtained by prescribing some very simple moments
and even a good undergraduate student should be able to obtain
these in a systematic and unified manner by using the maximum-
entropy principle.

It is interesting to observe that though some of the probability
density function expressions (specially the multi-variate ones) look
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very complicated, their description in terms of the characterizing
moments is always very simple. It is also interesting to note that
statisticians have used only those distributions which can be obtained
from the MEP by prescribing very simple moments. Consciously or
unconsciously, the principles of maximum-entropy and simplicity
appear to have been the guiding principles.

The problem of finding distributions characterized by minimum
Fisherian information has also been considered, e.g. it has been
shown that out of all the distribution with a location parameter and
known finite voriance, the normal distribution has the minimum
Fisherian information and out of all the distributions with a scale
parameter and with known first and second order moments, the
gamma distribution has minimum Fisherian information [22].
Random sample from these disributions give minimum information
about the location and scale parameters respectively.

However, it will be more interesting to characterize distribution
as maximum Fisherian information distributions since we will be

interested in knowing the distribution, random samples from which
give maximum information about location, scale and. other para
meters of the population. In optimal design theory [55], suitable
functions of Fisher's information matrix are maximized to. get opti
mal designs.

Finding minimum Fisherian Information Distribution is like
findmg minimum entropy distributions becausethesewillgive, in some
sense, the most biased or the most predictable distributions in light
of the available information. However, such distributions are also
very interesting These are usually discrte, not unique, and the least
likely to arise, but ahese can be.useful in pattern recognition [55, 56],

For obtaining discrete distributions, usually the MDI principle
in more useful because the choice of a suitable prior is necessary. For
the continuous distribution, the MEP is usually quite sufficient.
Hobson and Cheng [15] strongly pleaded for greater use of the MDI
principle and claimed superiority for it. Tribus and Rosetti [50] on
the other hand, strongly defended the MEP. In practice, they are
based on the same principle of minimum bias or maximum
uncertainty and we can use either one which is convenient in a
problem.
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76.2 Estimation ofProbability Distribution

Given a random sample Xi, from a population with
density function/(;x:, 6), the principle of MDI shows that the value
of 0 which minimizes 1 [/: g], where g is the sample distribution, is
the one which maximizes the likelihood function. In this sense the
Maximum Likelihood Principle is a special case of the MDI princi
ple. We may even consider this as a 'proof of the Maximum Likeli
hood Principle. ,

If the form of/is known, we find the rhomeuts for which / is
the maximum entropy distribution. Then we find the sample values
of these moments and use these as estimates for the population
parameters.

If the form of/is not known, but the characterizing moments
are given, we can use the MEP to find the form of/

Jaynes [161 established hisentropy concentration theorem viz.
that 2N(,Smax'S) is asymptotically distributed as chi-square with n-m-l
degrees of freedom where N is the size of the sample, m is the
number of moment constraints, and n is the number of classes. This
enables us to know how close a givendistribution with given moments
is to the maximum entropy distributions with the same values for
moments. This show show the chi-square test is a test of the closeness
of entropy to the maximum entropy.

Theil [48] has recently given another version of the minimum
information diveragence principle. He chooses g to minimize
5f(x)Hf(x)lg(,x))dx. When some partial information is 'available
about both/and g, e.g., if the form of gix) is given and the moments
for/(;c) are known, and those moments those which characterize
g(x) as a maximum entropy distribuiion, then he seowed that gW
has the same moments asf(x}. Parzen [45] has further discussed the
implications of this result.

-

The MEP and MDIP are clasely related to the minimum chi-
square estimation principle and the method of moments.

16.3 Analysis of Categorical Data

The generation of hypothesis for multi-dimensional contingency
tables by using the maximum-entropy principle, has been discussed



48 JOURNAL OF. THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

For the special case auto-correlation function is the same as
the auto-covariance function.

We how define the spectral density Sxif) by :

so that

S»(/)=A/ sxp i-i Ivt fm A/)

Rx{m) Sxif) (S t)df
—iA/

Sx if) and Rx (m) form a Fourier transform pair.

(97)

(98)

In practice, we have only a finite number, say 2A/+1 values,
of the auto-correlatioQ function of a weakly stationary time series
fe} of zero mean. If we know /?®(m) for all m, we could find Sxif).
Now our problem is to find a spectral density Sxif) which corres
ponds to the most random or most unpredictable or most unbiased
of time series where the auto-correlation function is consistent with
the set of known values. This requires the principle of maximum
entropy. The MEP gives an estimate which is asymptotically
normal and is asymptotically unbiased.

The basic idea of the method is to extrapolate the auto-corre
lation function of the given time series by maximizing the entropy of
the process. The method is well-suited to the spectral analysis of
relatively short data records and as such the resolution of the method
is usually superior to that obtained by using the conventional linear
methods.

The maximum entropy method for use in spectral analysis was
developed by Burg [2] in his Ph. D. thesis, almost independently of
the work of Jaynes. The method is described in a monograph by
Haykin[13]. A book, edited by Childers [4] contains a dozen
papers on MEM published in the period 1967-1978. It also contains
an extensive bibliography. The Proceedings of the First ASSP work
shop on Spectral Estimations held at McMaster University of August
17/18, 1981 [14] contains seven papers on MEiS4 including the paper
by Jaynes and Parzen referred to earlier.

X'
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by Good [12], More recently, Gokhale and Kullback [10] have given
acomprehensive discussion of the analysis of contingency tables by
the use of the MDI principle. Kapur f36l has discussed the estimation
of probability distributions of cell entries when these are regarded as
random variables.

16.4 Testing ofHypotheses

The entire book by Kullb!>'devoted to . testing hypo
theses, but it involves KuHbae:, ^^ler measures. It does not
make use of the M.¥~ x ^

16.5 Time Series Analysis , .

One of the most powerful applications of the maximum-
entropy principle is to non-linear spectral analysis of time series data.
The statistical discrete time series :

X2,...,A:yv} (92)

represents a particular realization of a stochastic process. This will be
a weak stationary process of order two if the statistical moments of
the process xipto order two depend on time differences only. The
mean of the process is :

(93)

The auto-correlation function of the process for lag m and time
origin n is given by :

Mm, n)=E{x„+„'j (94)

where x* denotes the complex conjugate The corresponding auto-
covariance function of the process is defined by :

C^im,n)=E{ix„+„-ii.x(n+m) (at*-|i*(«))} (95)

,In the case of weakly stationary process of order two, the mean iix(n)
and the auto-correlation function (m, n) are both independent of
the time origin n so that :

[Aa!(«)=Hj;=const, Rx {m, n)=Rx{m),
C;c(/M,«)=C«:(m) (96
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16.6 Estimation ofMissing Data

of the^MEP^ example of the applicationof the MEP. Suppose we are given a set of observations ;cx,
""I observation is missing. What is the mostunbiased value for this? Let xbe this value and let r be the total of
th. kaown observations, then maximizing:

_V - , X, x. X

it, T+x r+;c-y+^^«^ •..(99)
we get,

[<•• <>I"^

J.

..., xy. yy\y+'P ' ...(101)

x'\^ ...(102)

IfJCi=;i;a=...jj„=(x, we get, of course, x=[i., y=it.. We shall
give more examples of this type in Part II.
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